This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
We begin to recognize that smart materials provide the ability to precisely design behaviors. The material becomes secondary to the effect, and if we properly map how a transformation could and should proceed, then we will discover that numerous materials are capable of producing the behaviors to yield a desired effect. Decoupling material from effect is but one challenge in working with these materials—a more difficult one is determining how to directly design for effect. An effect should be more than the production of a different color, it should result from the instrumentalization of the different color. Does the change in color reduce the ambient light levels? Does it obscure visibility? Should it activate an interior system? Could it visually change an object’s apparent location in the field of view? Looking at just one behavior—the transmission of light through a transparent medium—we find that several smart materials are capable of controlling transmission, but there are significant differences in how they do so, as well as in the specific results. The spectral composition of the light might be altered, the light may be diffused or redirected, view may be diminished, and ultraviolet or infrared radiation may be absorbed or reflected. Smart glazing is often proposed as a seamless method for stabilizing interior light transmission as daylight levels change, but no material actually does this.
The smart material that has penetrated furthest into the field of architecture is the light-emitting diode, or LED. Less than five years ago, LEDs were found only in novelty applications, such as disco dance floors. White light from LEDs has recently proliferated into general, or ambient, room lighting in competition with fluorescent and High Intensity Discharge (HID) systems. Although less efficient than conventional general lighting, and much more expensive, LED lighting has nevertheless been designated as a “green” technology, which has helped encourage its use. This evolution illustrates the path taken by many smart materials as they enter into the architecture field—first demonstrative, then performative as we fold them into our normative practice.