NEW DEFINITIONS WILL CHANGE THE WAY YOU LOOK AT CEILING GRID.

Finally, grid can work as a totally integrated element of design. The crisp detail of Definitions opens avenues of expression never explored before in ceilings. Available in five distinct profiles, Definitions performs like conventional grid while revolutionizing the face of ceiling design. For a free color catalog, call 1 800 233-3823 and ask for Definitions.
Introduction 97

Uncivil Engineering 98

Midfield Terminal Complex,
Pittsburgh International Airport
Pittsburgh, Pennsylvania 100

Landside Terminal
Denver International Airport
Denver, Colorado 106

Pier 4/4A, Heathrow Airport
London, England 108

First Avenue Cooling Plant
Minneapolis, Minnesota 112

Pinedo Teleport
Seville, Spain 116

Jubilee Line Extension
London, England 120

Leamington Municipal Transit Hub
Minneapolis, Minnesota 126

Irving Avenue Parking Garage
Syracuse University
Syracuse, New York 130

Focus on:
Value-added Infrastructure 136

Computerizing the Office 71

Technology 26

Observations 32

Letters/Calendar 4

Design News 21

Technology News 24

Product News 30

Product Literature 142

Manufacturers Sources 147

Advertising Index 160

Classified Advertising 168

Reader Service Card 169

Infrastructure: A Role for Architects
Tasso Katselas Associates, Architect

C. W. Fentress J. H. Bradburn
and Associates, Architect

Nicholas Grimshaw & Partners, Architect

Ellerbe Becket, Architect

Guillermo Vázquez Consuegra, Architect

11 New Stations for London's Underground

Ellerbe Becket, Architect

Bohlin Cywinski Jackson, Architect

Projects in New York City; Seattle;
Rochester, New York; Los Angeles

Pay attention. Sometime soon, someone will
make your life easier by selling you a
computer. By Steven S. Ross

Advances in High-Performance
Glass Coatings

Jonathan Barnett on Sustainable Growth/
Suzanne Stephens on the 1893 World's Fair

To Find Work, Create Your Opportunity

Nicholas Grimshaw & Partners, Architect
Jo Reid and John Peck photo
Among the world’s greatest architects, Frank Lloyd Wright designed masterpieces that have influenced contemporary architecture. He confirmed that while greatness is often measured by beauty of form, the requirements of function are equally compelling.

That’s why every Sarnafil roofing system is designed to not only look good but to perform. Only Sarnafil offers you design possibilities that are backed by an undeniable record of performance. For nearly 30 years, we have provided not only aesthetically pleasing products, but also unmatched peace of mind to architects and specifiers around the world.

So, for your next project, specify a Sarnafil roofing system. Choose from five different attachment systems, in unlimited custom colors, from 48 to 96 mil thicknesses.
Architects have been teaching Herman Miller things for years—things about buildings, about humanity, about work. Often, architects even teach experienced corporations and people something about themselves. As a company, we have tried hard to learn.

What have they taught us? That all work has dignity. That good architecture provides for the physical and emotional needs of people. That well-designed work environments can lift the spirit and palliate the routine. That corporations have responsibilities beyond the bottom line.

Architects who have worked with Herman Miller have left us with lessons we are still learning. We are still working to become better students. Of course architects have also left us with buildings, but the buildings only remind us that bricks and steel are merely a beginning.
Rap New Salk Scheme

In your April 1993 issue [RECORD, page 27], you reported on the continued opposition to the proposed new additions to the Salk Institute. It is unfortunate that the same degree of rigor that Jonas Salk exercised both in his discovery of the polio vaccine and in his collaboration with Louis I. Kahn in the design of the Laboratory Building is noticeably absent in the current design process. This time, priority has been given to skillful but empty public-relations initiatives rather than a truly conscientious search for design excellence.

In and of themselves the proposed buildings are perfectly decent designs. But placed so close to Kahn’s eloquent masterpiece, an exquisite dialogue between a remarkable building and a glorious site, they become intrusive and mediocre.

Thomas O. Ramsey
Stevens & Wilkinson, Inc.
Atlanta, Georgia
(For an update on the Salk imbroglio, see page 23.)

Architecture Gagged

I appreciated the slight attention given to a recent “incident” (Architecture Gagged, [RECORD, February 1993, page 26]). The school in question is the School of Architecture and Urban Planning, University of Wisconsin-Milwaukee. Note that in most architectural renderings the human figure is placed as context to give a sense of scale to the building. In this project, however, the figures under attack were female and unclad, along with a few unnoticed unclad male figures. The figures represented humans, the majority of which were women, in ordinary everyday circumstances (in the nude). Although displaced from their original context the figures were photocopies of existing works of art; i.e. deAndrea’s “Couple” and Rodin’s “The Thinker.”

The debate raises questions of sexism, social sensitivity, political correctness, and freedom of expression. According to Associate Dean David Kenneth Reed, “the naked body has nothing to do with architectural design.” It can, however, be contested that the naked body has everything to do with architecture when it brings into focus the ignorance and social ineptitude of an entire University discipline.

Timothy Robert Gratkowski
Milwaukee, Wisconsin

Copyright Act “Impossible”

The article on the Copyright Protection Act by attorney Carl Sapers [RECORD, March 1993, page 21] points to a serious problem with this law. As a practical matter, compliance is impossible. Discovery of infringement upon a copyrighted design cannot be made with any degree of certainty. Any architect who would sign a warranty clause as proposed in the article would be foolish indeed. Quite contrary to such a clause, he should include a disclaimer stating no such warranty is given due to the impossibility of discovery.

Reuben M. Welsh, Jr.
Architect
Corpus Christi, Texas

Mr. Sapers replies: I agree wholeheartedly with Mr. Welsh’s view of the new copyright act and would, of course, urge my clients not to sign such a warranty. On the other hand, I cannot imagine a well-advised owner neglecting to seek such a warranty. Only the architect can verify that the design was created by the architect and not copied.

Through June 18

Through June 25

Through Mid-August
Professional Development Architecture Courses, Harvard University Graduate School of Design; fees range from $150 to $1,090. Contact GSD, 617/495-1680; Fax 617/495-5967.

June 7-10

June 12-25; 13-14

June 13-18
International Design Conference examines “Reconstruction Ahead.” Write P. O. Box 664, Aspen, Colo. 81612 or call Lori Schwab, 212/725-2235.

June 14-17
NeoCon ’93, Chicago Merchandise Mart. Contact Angela Krey senior, 312/527-7552 or Laura Mercier, 312/527-7555.

June 15-August 20
Design Diaspora: Black Architecture Continued on page 149
To Find Work, Create Your Opportunity

A year ago I stood in a conference room listening to a presentation by Tadao Ando. What struck me as much as the quality of his work was his enterprise in identifying projects where no one else had yet seen the potential. He could pass a left-over, seemingly unbuildable lot, for instance, and present an owner with a powerful proposal which often developed into a real project.

After all, training equips the architect better than anyone to spot such opportunities, but there has always been a reluctance to create projects because it smacks of ambulance chasing.

Nothing could be more off-base. Take infrastructure, theme of this month’s Building Types Study. Who would have thought that so many different types of projects, from telecommunications centers to parking garages to steam plants to subway systems, were able to benefit from the humanizing ministrations of an architect or landscape architect? As this issue’s lead essay, entitled “Uncivil Engineering,” points out, the climate is ripe for architects to look for such opportunities.

The funding will materialize, despite April’s defeat in the U. S. Senate, after a successful filibuster, of a Clinton Administration bill that would have poured $19.5 billion into the economy. Of this amount, some $8 billion would have gone into infrastructure projects, including community development block grants and just under $1 billion for waste-water-treatment plants.

In any case, the Intermodal Surface Transportation Efficiency Act, or ISTEA, passed in 1991, is pumping $3.9 billion this year into construction-related development, about two-thirds for highway construction, the balance for mass transit. (States then match federal funds on a 20 to 80 basis.) Not only that, but ISTEA also encourages enhancements around the facilities—landscaped “lids” over freeways that bisect residential neighborhoods, for example—spawning opportunities for architects with the vision to “see” such projects.

What’s more, on federal work, which must be announced in the Commerce Business Daily, the designer or other prospective vendor of a service or product is by long tradition assumed to have an edge by virtue of having helped shape the Request For Proposals on which qualifications are judged.

Creative openings exist also in other fields for astute and ambitious architects. For example, the redevelopment of large chunks of well-placed but derelict land in the nation’s old industrial towns and cities is a need and an opportunity, as noted in the Somerville, Massachusetts, project described in this month’s article on sustainable development (page 32). There are opportunities in adaptive reuse of historic structures, and in consolidating, expanding, or recycling school or manufacturing facilities. Growth of the “green” movement, into which the Administration is expected to put new teeth if it can work out the short-range conflict with jobs, is a source of architectural services, not only as “green” building projects, but also in consulting services, a direction I have championed in the past as a crucial ingredient in raising the architect’s public stature. Green services could include such areas as lead-abatement consulting and “green” audit services.

The range is huge. Where architects tap into it, and how, is limited only by their imagination, enterprise, and perseverance.

Stephen A. Kliment
SEPARATELY, WE WERE RECOGNIZED FOR INNOVATION AND QUALITY.

TOGETHER, WE ARE SETTING A NEW STANDARD.
New Architecture School Will Sit at Campus Crossroads

Designed by Perkins & Will, Temple Buell Hall will help stitch together old and new at the Champaign-Urbana campus of the University of Illinois when it opens in late 1994. Set at the intersection of two major campus axes, the 77,000-square-foot complex, which will house the School of Architecture and Departments of Landscape Architecture and Urban and Regional Planning, will present a masonry facade to older Georgian buildings and a curving glass wall to the newer parts of campus, says Ralph Johnson, the partner-in-charge. The masonry portion will contain studio lofts, while the glass structure will house offices. Equally important will be the spaces defined by these areas—an irregular indoor space usable for exhibits and gatherings and an outdoor garden. C. A. P.

Ten Finalists Vie for Palladio Prize

The winner of the Andrea Palladio international prize for architecture will be chosen in late August from 20 finalists, including: Marc Benari (1, cemetery, Nee, France); Dick Bruijne (2, weekend “tree” house, Almere, Holland); Gerald Sanderson (3, Windsor House office building, Plymouth, England); Enric Batlle and Joan Roig (4, restoration/extension of Pontes Palace, Murcia, Spain); Oscar Cadena (5, house, San Luis Potosi, Mexico); Shuhei Endo (6, Tochigi tile firing plant, Asahicho, Japan); Richard Stacy House (7, [Record], April 1993, page 154).

awards. Contact CAYC, Episodio Gonzalez 4070, (1407) Buenos Aires, Argentina. Fax: 011-54-1-566-3876 or 311-8156.
• August 31 is the deadline for overseas entries in the Makmax Membrane Design Competition. Contact Shinkenchikusha Co., Ltd., 2-31-2 Yushima, Bunkyo-ku, Tokyo 113, Japan. Phone: 011-3-3811-7101.

the cost of a new house. Since March, prices have slackened, but long-term shortages will mean higher lumber prices. The timber industry has argued since the 1960s that it plants more than it cuts, creating a “sustainably. Environmentalists have found again and again that by the time a species is listed, its habitat is so threatened that a comeback is a heroic undertaking. Arts and culture are among the new developed countries where wood framing and siding is widely used. Concrete framing and stucco or masonry cladding is much more common elsewhere. James S. Russell

WINDOW 4.0 runs on IBM PCs or clones with DOS 2.1, and needs 512kb RAM. An extensive update of WINDOW 3.0 by Lawrence Rendulic's Windows and Desktops, type (masonry or frame), fuel cost, internal loads and hvac type, and eight choices of window orientation. The user selects from seven window types (casement, awning, double-hung, etc.) and specifies the desired area, window type (masonry or frame), fuel cost, internal loads and hvac type, and eight choices of window orientation. The user selects from seven window types (casement, awning, double-hung, etc.) and specifies the desired area.
Marseilles Cheers Houston Students’ Plan For Historic Tobacco Factory

Rough, tough, and worldly-wise Marseilles

ARCHITECTURAL RECORD Technology News

What’s New in High-Performance Glass Coatings

The car business, with its market- and consumer-driven performance and production-cost requirements, is the engine that pulls the development of much architectural flat...Southwall Technologies, inventors of Heat Mirror, a suspended film used in insulating-glass units, developed a laminated configuration for automotive use that is now

ARCHITECTURAL RECORD Technology

Spin-offs from the car business add variable-transmission, spectrally selective, and energy-generating products to the architect’s glass-design tool kit.

ARCHITECTURAL RECORD Product News

Special-Use Architectural Glass

Glass...

Driven by expanding, hotly competitive market and regulatory concerns, more innovative products were developed in recent years for glass and glazing than for any other building category. But the pace of high-performance glass introductions has slowed in the past year, while product managers wait for the next generation of coatings to emerge in a cost-effective format. As for glass sales, many industry spokesmen polled by Glass Magazine in its 1995 forecast saw the year as being marginally—maybe 2 percent—better than a very down 1992. Potentially stronger areas are retrofit projects, especially in late ‘90s and ‘90s strip shopping centers, and in the area of such special glass installations as security glazing and ADA-compliant automatic doors. And an optimistic Nick Limb, manager of architectural products for IOF, sees opportunities for architectural glass driven by the 1992 passage of the Energy Policy Act, promoting energy-efficient glass such as his firm’s Energy Advantage low-E product.

...and windows

Lacking the markets that would drive innovation, the window business is in a consolidating frame of mind. Rather than introducing more innovative products, companies are incorporating the thermal values and test standards developed through the National Penetration Ratings Council [RECOR, June 1991, page 40] into residential windows. These standards represent a numerical means of comparing the thermal performance—the U-values—of different windows as total assemblies of glass, spacers, and frame, information needed in cooler, heating-load climates. The ongoing, much more difficult, effort of the NRC is how to compare solar heat-gain performance of complex windows, taking into account optical characteristics and the impact of shading devices. Some basic heat-gain calculations are included in Lawrence Berkeley Laborat

300. Single-pane laminate

A new specialty division of DuPont, maker of the Biaxtrix polyester-biaxial interlayer for laminated glass, is now marketing SentryGlass, a composite film normally applied to the interior surface of glass, that gives a single pane many of the performance and security benefits of traditional, two-layer laminated glass, but with only half the weight and thickness. The three-layer film is factory-applied using standard laminating equipment under a vacuum, which eliminates the peeling and optical distortion associated with field-applied films. The composite film is based on an anticorrosive product used in car windshields, and protects against injuries caused by minute slivers of glass (spalls) flying from the interior side of glass. The photos (right) demonstrate SentryGlass performance compared to standard glass under the impact of a 16 lb weight dropped from 10 ft. The composite also passes the more severe UL 972 test, in which an 1/8-in.-thick pane must resist penetration by a 5-lb shot dropped from 40 ft. It is an approved safety glass, and needs no special moisture-resistant edge treatment.

Ongoing full-scale testing on glass laminated with the PVB/polyester composite is being performed at Texas Tech, and is demonstrating use characteristics similar to standard, two-light laminates with respect to wind loads and blast resistance. Preliminary results indicate that SentryGlass qualifies for installations where codes might require two-light laminates or tempered glass. The diagram below calls out components of SentryGlass: a special, moisture-resistant PVB interlayer next to the glass; a layer of optically clear PTF, and an abrasion-resistant coating. This surface is not affected by common solvents such as acetone or gasoline, and can be cleaned with standard window cleaners. DuPont Company, Advanced Glazing Products, Wilmington, Del. n
While big glass-makers wait for a better '94, other vendors have come up with innovative glass materials for the building designer.

301. Clear obscure glass
S. A. Bendheim, a New York-based firm long known for imported, hand-blown glass for historic-renovation projects as well as for art and stained glass, is now making available a wide range of patterned glass in sizes for architectural applications. The range includes products from both foreign and domestic sources. While many of the decorative glasses shown at right are not in themselves new patterns, company vice president Don Jayson claims that this is the most extensive selection available in North America from a single source.

Collectively called Cleartex, the line includes rolled glass, with a decorative texture pressed into one side of molten glass by a metal roller; mechanically drawn glass in reeded and fluted patterns; and mouth-blown art-glass sheets, which can have a consistent color or a mottled effect. The rolled and drawn products are primarily clear; the blown glass is available in a range of soft and deep colors. Color can be added to an otherwise clear textured glass by laminating it to a sheet of colored glass. The standard Cleartex glass comes in sheets about 60 by 80 in., and can be installed in both interior and exterior applications. Larger-size panels are created by a seam-laminating technique, butting two patterned lights edge to edge and laminating them to a monolithic glass light.

Bendheim has the capacity to laminate textured glass using either heat and pressure or a liquid-resin technique; some glasses can be tempered, a less-expensive option when a safety product is needed. Different patterns mounted back-to-back have an entirely new aesthetic, expanding the custom architectural potential even more. Bendheim Architectural Glass, New York City.
302. Printed interlayer

Originally introduced on a custom-pattern basis primarily for interior applications such as partitions and cabinet glazing, ChromaFusion laminated glass now comes in an expanded range of standard designs and colors. Maximum sizes are larger as well—58 by 133 in.—making the colorfast laminate suitable for exterior glazing and curtain walls. Developed by Claudio Cesar, an artist with special expertise in inks and pigments (with research and marketing assistance from DuPont), the architectural-graphic glass is produced in a new 28,000-sq-ft factory in Rhode Island.

Standard designs come in three groups: 14 geometrics, such as Negative Squares (1), Horizontal Lines (2), and Negative Grid (4); nine textures, such as Wisp (3); and five sandblast-effect densities. Since designs are printed on film and sandwiched between two sheets of glass, the surface will not fingerprint, stain, or wear. And unlike frit glass, the reflectivity of the pattern is identical from both viewing sides. Patterns are crisp, and can be specified in a range of colors and combinations of colors, including metallics.

Costs for ChromaFusion, priced according to the size and specs of the glass lights and the volume of the order, start at about $8.50 per sq ft, becoming more competitive with other glass-graphics techniques as complex, multiple-color treatments are specified. Since the dot-matrix pattern is printed on the interlayer, almost any graphic, such as halftones or line art, can be reproduced, incorporating the subtle shading of the original artwork even when greatly enlarged.

ContraVision, a companion two-way-reading laminate product, was used by architects CRSS, Inc., to create a special Presentation Center within a larger showroom space. A 20-ft-long glass wall presents a transparent face to approaching customers, set off by a corporate logo (5). But once inside the space, a large image is visible, an old news photo digitally photo-imaged and reproduced across five glass panels (5a). The relative brightness of each space affects the transparency. Both of these Architectural Graphics Glass products are true, PVB-laminated glass, with the impact-resistance, sound attenuation, and UV protection offered by standard laminate glass. Cesar Color, Inc., Burlingame, Calif.
303. Nonreflective glass
Amiran is a multiple-layer interference coating for flat glass that reduces reflected light to less than one percent. (Standard plate glass reflects from 8 to 15 percent of incident light, depending on whether it is single- or double-glazed.) The coating is weatherproof, and is ordinarily applied to both sides of a glass light. It works like the matte glass used to protect artwork, keeping the view clear and free of distracting and confusing reflections. The dining room below has standard plate-glass windows, which reflect the illuminated interior after dark, essentially blocking the view for diners at any distance from the windows. In comparison, the restaurant at bottom (designed by Louis Owen, Inc., architects) has the identical view (it’s on the floor above) but large (4- by 9-ft) Amiran lights permit an unobscured view of the Seattle skyline beyond. For a storefront, where the view is from the outside in, the nonreflective glass brings displays visually closer, without reflected street clutter, and reduces the need for overhangs or awnings to control glare.

Made in Germany, Amiran glass is being stocked in this country in sizes up to 10.14 by 6.1 ft, and in five thicknesses. Schott Corporation, Yonkers, N. Y.

304. Multilayered decorative glass
The Inner-Lite process, developed by glass artist Gordon Huether, "suspends" colorful beveled, etched, or textured hand-blown art glass within an energy-efficient insulating unit. The technology is said to permit use of large-scale panels of decorative glass on exteriors as well as interiors in healthcare, school, and other public areas where maintenance might be a problem. No matter how intricate the interior glass pattern, the architectural glass is supplied to the jobsite as a glazed and sealed unit ready for installation in standard-dimension framing.

Pictured (right, top and middle), the Biomedical Research Facility at Stanford University (by Stone, Marricini & Patterson, architect) has suspended shapes of German blown glass set within panels of tinted Solex glass. (High-performance commercial glass can be specified for increased energy efficiency, and so that the outer lights work with adjacent building materials.) Here, the inboard surfaces of the outer glass panes have been etched, creating a light-diffusing frame for the teal-colored art-glass squares adhered to the inner light of the triple-glazed unit. A glass sculpture by Gordon Huether (bottom photo) demonstrates some of the range of textures and colors that can be incorporated within a single panel. These include multicolored dichroic glass, colored blown glass, sharply beveled pieces that act as prisms, and hand-made seeded glass.

Architectural Record June 1988 31

Literature from glass fabricators and manufacturers is featured on page 142
For the Record: Schuyler at the 1893 World’s Fair

By Suzanne Stephens

Montgomery Schuyler’s “Last Words About the World’s Fair,” published in THE ARCHITECTURAL RECORD in 1894, has often been considered the most perceptive critique of the Columbian World Exposition to be published at the time. Even among Schuyler’s own work, this essay was judged “possibly the best thing he wrote,” by William Jordy and Ralph Coe, who compiled Schuyler’s criticism in American Architecture and Other Writings of Montgomery Schuyler in 1961.

Schuyler, a veteran newspaper journalist who had made architecture criticism a particular specialty, identified three attributes of the Fair, pertaining in particular to the Court of Honor, that were responsible for its “architectural triumph.” These were unity, magnificence, and illusion. At the same time, Schuyler cautioned against using the Fair as a model to be imitated in further architecture and planning endeavors. This “festival” grouping of buildings, erected temporarily in a waterfront setting and landscaped by Frederick Law Olmsted and Henry Codman, should be seen, Schuyler urged, as a “stage set.” To Schuyler, the Fair was not architecture. “The art of architecture is not to produce illusions or imitations, but realities, organisms like those of nature.”

At first reading, it seems strange that Schuyler, who has come to be regarded as the premier proto-Modernist architecture critic of the period, would seem to actually approve of these Neoclassical concoctions. Or that he would look so benignly on their symmetrical disposition around the lavishly peristyled and porticoed basin of the Court of Honor. After all, Schuyler was singled out by both Frank Lloyd Wright (“In the Cause of Architecture II” published in RECORD in 1914) and Lewis Mumford (first in Brown Decades in 1981, then in Roots of Contemporary Architecture in 1952), for helping advance progressive ideals in architecture.

As Mumford put it in Roots, Schuyler “never hauled down the flag.” Indeed Schuyler had initially criticized the choice of Neoclassical architecture at the Fair in an unsigned New York Times editorial since attributed to him. In the piece, written at the time of the Fair’s dedication in October 1892 (still months away from the opening on May 1, 1893), Schuyler said about the architecture, “as a style it looks backward,” calling it both “unmodern and undemocratic.” Nevertheless in the same piece he allowed that the Fair was still a “very remarkable triumph for our democratic Republic.”

Adjusting his earlier appraisal

During the next year, in which he wrote over half a dozen pieces on the Fair for the Times, as well as three articles for RECORD (including an anonymous “Architectural Aberrations” now attributed to him), Schuyler seemed to adjust his earlier appraisal of the Classical architecture of the so-called “White City.” While he panned the Neoclassical U. S. Government building by Willoughby J. Edbrooke as a “rude and crude and ignorant compilation of features” in his “Aberrations” piece, Schuyler declared the Neoclassical extravaganzas of McKim Mead & White’s Agriculture building and Charles Atwood’s Palace of Fine Arts to be “beautiful.”

In “Last Words” Schuyler pointed out that the choice of a Neoclassical architecture gave a strong unity to the ensemble, as did the common cornice line 60 feet in height, and the shared material—an amalgam of plaster and hemp called “staff”—that coated the temporary wood and iron structures. In this summary piece, he explained that the Classical buildings also achieved a magnificence not just through the staggering dimensions (George B. Post’s Manufactures and Liberal Arts Building was 1,687 by 787 feet), but by grace of the
One hundred years after the event, Suzanne Stephens re-examines what architecture critic Montgomery Schuyler had to say about the Chicago World’s Fair when it first opened.

“pillared avenues” of the Neoclassical arcades and colonnades that were associated with “the very beginnings of monumental architecture.” Indeed, the size of the Fair, embracing 633 acres, was three times that of the Paris Exposition of 1889.

While the Transportation Building, placed away from the Court of Honor on Olmsted’s picturesquely conceived lagoon, was designed by Adler & Sullivan as a monumental work, it didn’t quite win Schuyler’s complete approbation. On one hand, Schuyler commended the architects for treating plaster architecture as plaster, instead of trying to imitate masonry. Yet Adler & Sullivan attempted to “enliven” the plain expanses of staff by a color palette (basically red and orange) that Schuyler felt was “not successful.” Since the colors played such a major role, the overall design suffered. Schuyler also observed that the huge 70-by-100-foot Golden Doorway ended up being an “isolated fragment, entirely unrelated to the general scheme.”

Higgledy-piggledy planning
The State buildings also came under attack by the critic, particularly in their planning. In an article for RECORD, “State Buildings at the World’s Fair,” Schuyler condemned their clustered arrangement as “higgledy-piggledy,” where buildings were “strewn promiscuously” around. Regarding their individual architectural treatments, he didn’t condemn their historicist leanings per se. The particular approach to history was at issue. Schuyler felt the state buildings should reflect the history of the colonies and/or the region. McKim Mead & White’s adaptation of the Villa Medici for the New York State pavilion might be quite fine by itself, but he would have preferred an adaptation of an historic house from Albany instead. California’s Mission-style building designed by A. Page Brown, on the other hand, at least made an homage to the local color and character of architecture of that state. Even New Hampshire’s building, designed by George B. Howe as a modified chalet, was not, according to Schuyler, “inappropriate.” The German pavilion, another historicist building evaluated by Schuyler in The New York Times, was commended for using staff in an honest way, but dismissed as an overexuberant rehash of German architecture of the 15th and 16th centuries.

Exuberance at the Fair was allowable, of course, but in its proper place. And no place was as fitting as the Midway Plaisance. In a New York Times review Schuyler noted that “It is out here in the Midway Plaisance rather than in the White City itself, that the World’s Fair and cosmopolis is to be found. For the civilized world, or Christendom as it used to be called, is too much of a muchness to offer much of an ethnic study.” But ethnopic study only went so far. A notorious hit of the Fair was belly dancing, a.k.a “the hootchy-kootchy.” But it was too much for Schuyler: “The dancing at the Egyptian theatre is not describable, except by saying that it is disgracefully indecent.” Schuyler urged that it be stopped. His other comments about the various ethnic exhibits in this entertainment district were more jocular in tone, but today would be described as racist.

The Fair as a stage set
With most of his commentaries on the Fair, Schuyler made it clear that the architecture and planning had to be judged on quite different terms than such efforts in the every day world. Indeed as he wrote in the “Aberrations” piece, “Here, as in stage setting, illusion is what is aimed at.” Other critics missed this point, with possibly the exception of the European architects and historians. The European critics covering the Fair were divided roughly into two groups. Those who represented a general-interest audience often praised it highly. Some even marveled that Americans, known for their ugly, uncivilized cities, had it in them to come up with such a resplendent artifact. French writer Paul Bourget referred to the real landscape of Chicago he saw surrounding the Fair as “the black city.” As for the European architects and architecture critics, they were much harsher in their assessments. They generally saw nothing new
there, only weak imitations of Beaux Arts classicism. The English historian Banister Fletcher, in fact, feared that American architecture, known for its inventiveness, would be set back by the Fair.

Generally the reaction to the Fair by the American critics, in both the popular and professional press, was favorable at the time it opened. It was only a few years later, when American architects and architecture critics, such as P. B. Wight and Claude Bragdon, began to lament the rapid embrace of Beaux Arts academicism by all of America, even in the home of Chicago School architecture, that the Fair began to be viewed in a dimmer light. By 1922, when Louis Sullivan denounced the “virus of the World’s Fair” that caused the “violent outbreak of the Classic and the Renaissance,” it seemed as if his words were indeed the last and truest ones. In spite of Schuyler’s warnings of the dangers of careless imitation, the Fair’s popularity had fostered the growth of Neoclassical public and commercial buildings anyway.

An esthetic filter
Schuyler’s criteria for judging the Fair buildings—unity, magnificence, and illusion—so applicable to this ephemeral situation, were integral to a larger framework of values by which he evaluated architecture. His criticism was based on the belief in the honest and sincere expression of materials and building techniques, with design as an “organic” response to given conditions. He also examined each architectural response on its own terms. Yet these ideals were applied to the particular circumstances through a fundamentally esthetic filter. Traditional rules of proportion, scale, and harmony were basic to his evaluation, no matter whether Schuyler was criticizing Gothic Revival, Richardsonian Romanesque, Neoclassical, or proto-Modernist architecture. All such expressions still had to conform to the laws of the eye.

This approach to assessing architecture, from the point of view of the observer looking at buildings from the street, was not all that unusual at the time. Schuyler and others did not often address how the plans of the buildings affected the interior spaces or their functions. Nor was the perceptual and kinesthetic experience of space and light a major preoccupation of criticism at the time.

If Schuyler were to appear as a critic today, he would find more expected of his evaluations than the three criteria of unity, magnificence, and illusion, even for an ephemeral setting; would allow. He also might be perplexed to find that unity and coherence are no longer significant attributes of modern-day spectacles of a comparable nature. Instead images, often fragmentary, are collaged together. While the hotels at EuroDisney obey a height limit, the variegated “themes” do not stress unity, magnificence, or illusion. If anything they accept their fakeness with a cheery bravado.

Schuyler would also be surprised to hear theorists today argue that unity is no longer a viable goal of architecture. “Unity” is now just a component of what K. Michael Hays and others would call “bourgeois humanism.” It is seen as a hopeless nostalgic dream of a retardaature value system that implies a belief in the presence of a centered, coherent world where the observer (or “subject”) still has a solid footing. Without a “subject” being important, magnificence and illusion are simply irrelevant.

An unideological approach
Fortunately Schuyler doesn’t have to deal with all the unresolved issues of the modern world. He’s gone. But his bequest to criticism remains. Happily, it is not in the form of a few phrases or rules that one is supposed to apply a priori to each new situation. Rather his implicit credo is that evaluating architecture and urbanism requires one to look unideologically at the work and confront it directly on its own terms, at that moment. Next, one tries to clarify the criteria by which the work is to be judged, and then attempt to communicate those final words to the audience.
Computerizing the Office

Last year Columbia University, where I teach, hosted an exhibition of architectural drawings. The examples, spanning about half a millennium, showed a clean, stately progression from the work of Italian masters. Their art helped the designer design, helped the client and whatever government regulators who were around visualize the final product, and helped the builders put it all together.

The past few years have seen the development of technology that has the potential for moving architectural design and drafting further than at any time in the past 400. We can now rough out a design in three dimensions, test it for shadows and light, color and bulk, circulation and energy consumption. We can walk through a design, firm up a part of it, do the hard-line drafting, and modify at will. We can track possible costs, and correspond software with suppliers' computers. The software can even check our work as it progresses. Does it meet local codes? Targets for first cost? Life-cycle cost? Potential construction schedules? Are there incompatibilities between the windows you want and the exterior wall panels?

Although we can do all this, technically, we can't do it on a regular basis. The reason: You can only get out of a drawing what you put into it. Either your office does it by building expertise and adding to libraries of details, or product vendors provide the expertise with computerized catalogs. In fact, both are happening.

By the end of the decade, there will be a wide gap between those who have computerized correctly—from top to bottom in their organization—and those who still maintain an artificial separation between design and production drafting.

The people who sell software and hardware are trying to make it easy for you. As of this year, all major CAD software running on DOS, UNIX, and Macintosh will share more or less automatic file translation. Over the next few years, much of the expected increase in computer power will go into ease of use—software will train you as you use it, and even suggest alternative ways of doing specific tasks.

Most importantly, different software and hardware vendors have different views of how different architects want to work on different projects. Thus, they will continue to bring different products to market. Pay attention. Sometime soon, someone will make your life easier by selling you a computer. Steven S. Ross
There’s a computer in your future—your near future. In fact, there probably are several. Surveys of our readers early this year showed that more than three-quarters of the respondents are at offices where computers are in use for design and drafting. Computer use is increasing fast too, despite the mixed market for new construction.

But various practices are using widely different computer technology in widely different ways. This supplement cuts through the confusion to highlight the key trends, and to highlight how practices of different sizes and types are computerizing. Some conflicts:

- Computerization has spread most in the drafting room. But in the future, most practices may not have a separate drafting room at all. Each professional in the practice will have a computer or terminal.
- Use of computers for client presentations has spread at the high end—large projects—but also for the very smallest projects, to help less-sophisticated clients visualize designs. But it is generally not cost effective to do highly detailed visualizations too early in the process, when the design is still in flux.

- More conceptual design is being done on computers, but architects in many of the larger practices are resisting the trend—seeing it as a back-door way to force designers back to “drafting.”
- The variety of hardware and software in use in architectural practices seems to be increasing, not decreasing. But the lack of standardization has not been a huge barrier, thanks to technical advances that allow everything to work together almost—but not entirely—seamlessly.
- Software has become easier to use for simple tasks, but more dazzlingly complex for those who wish to explore all possible software capabilities.
- Training has emerged as a major cost—perhaps the major cost—of computerization. But much of the cost has remained hidden in on-the-job informal training time and lessened productivity.

Exactly how are offices using computer technology these days, and how can computers enhance productivity and design quality?

Survey results
Our surveys, as you might expect, showed that most offices are using drafting and design software. But they also showed wide use of spreadsheet and word-processing packages, and software for presentations, brochures, and bookkeeping.

Our surveys confirm that users of UNIX equipment from Sun, Intergraph, and others do mainly production drafting on their computers. Owners of DOS and Macintosh equipment are, on the average, far more eclectic, using their equipment for presentations, brochures, word processing, office recordkeeping and more. DOS users are more likely to favor drafting than their Mac counterparts, and Mac users are more likely to favor design and modeling. It’s not that there isn’t great rendering and presentation

<table>
<thead>
<tr>
<th>Focus by building type (firms can have more than one)</th>
<th>68</th>
<th>45%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>62</td>
<td>41%</td>
</tr>
<tr>
<td>Residential</td>
<td>39</td>
<td>20%</td>
</tr>
<tr>
<td>Institutional/religious</td>
<td>27</td>
<td>18%</td>
</tr>
<tr>
<td>Industrial</td>
<td>27</td>
<td>18%</td>
</tr>
<tr>
<td>Educational</td>
<td>23</td>
<td>15%</td>
</tr>
<tr>
<td>Health care</td>
<td>23</td>
<td>15%</td>
</tr>
<tr>
<td>Retail</td>
<td>21</td>
<td>14%</td>
</tr>
<tr>
<td>Offices</td>
<td>15</td>
<td>10%</td>
</tr>
<tr>
<td>Government/public</td>
<td>11</td>
<td>7%</td>
</tr>
<tr>
<td>Rehabilitation/maintenance</td>
<td>24</td>
<td>16%</td>
</tr>
</tbody>
</table>
A survey of our readers shows how architectural offices are using computer technology these days, and how computers can enhance productivity and design quality.

Software for UNIX equipment. There is. But many practices seem to find it more cost-effective to do heavy-duty drafting on the heavy-duty machines, and do the other tasks on DOS and Mac equipment in the same office. That's odd in one sense, because tasks such as rendering actually take more raw computational power than straightforward drafting. But rendering and brochure and presentation materials are episodic; handling them on equipment dedicated to production drafting could disrupt the work flow.

As UNIX equipment continues to come down in price—the smallest from Sun, HP, and other firms are priced no higher than the larger DOS and Mac machines—this division of machine labor will probably lessen.

Small firms are much more likely to use computers for design than are larger firms. Firms with three or fewer principals are most likely of all to have computerized from top to bottom than are firms with more professionals.

About 30 percent of the respondents do all schematic design manually. Another 10 per-

6, 7. One drawing database can produce wildly different images for different purposes, as in these two views of the new Hong Kong Airport.
percent do as much as half of their schematic design without any automation. But only about one in 20 do it all on the computer. Design development is fast becoming computerized, however, with fewer than a fifth of respondents doing it manually, and about 15 percent doing it on the computer.

When it comes to construction drawings, about one in six of our respondents said they do drafting entirely by hand; about one in four said they do it all by computer. About half said they do 75 percent or more of their drawings on computer, but only about one in four said they do as much as 75 percent of their drawings manually.

Despite the existence of many cost-estimating software packages, the task is split about evenly between the computerized and the manual—about a fifth of the respondents do estimating manually; a fifth do it all on computer.

When it comes to specification writing, however, the battle is over—well over half of our respondents say they do all of their specification writing on computer (although not necessarily with specification databases; many simply use word processors to cut-and-paste standard paragraphs). Fewer than 10 percent say they do it all manually.

The situation is much the same for preparation of brochures, bid documents, and other text-intensive tasks. Fewer than 10 percent still prepare documents manually.

Project management is split about evenly between computer and manual methods, and when it comes to training, more than a third of the respondents listed “on the job” training, with regular staff helping newcomers, as most important. Fewer than 10 percent use mainly outside training workshops, and about 10 percent have the luxury of using mainly in-house dedicated training staff.

Only a few—mainly Intergraph users—say they rely on dealer training. And only a few use college-based training courses or consultants coming to the office itself.

There’s no particular pattern linking training methods or sources to other software or hardware. This seems odd, because most offices mix hardware and software from different vendors. Getting everything to work together in the most efficient fashion requires more than a careful reading of separate software and equipment manuals.

Three-quarters of the respondents report they distribute computer equipment among staff in general; only about one in seven say terminals are in specific, dedicated rooms.

On the following pages we’ve put together case studies of two architectural firms, highlighting how computer technology could affect your practice in the next three to seven years.

But first, consider this: On average over the past 20 years, computing power that can be purchased at a given price has doubled every 18 months. By the year 2000, if the trend holds, desktop computing power will double and redouble five times—ending up about 30 times greater than today’s PCs.

Ever-increasing computing power allows us to “build” an entire project on a desktop. In the future, extra power will mean “smarter” drawings that “understand” building codes and incompatibilities between separate components.
“Old-Fashioned” Architects Leap To the Cutting Edge

By Tom Bennett

For this Seattle firm, the decision to make the switch to computerization was easy or quick. David Nordfors and Guy Thomsen formed the firm in 1980, and for 10 years had been conducting business “the old-fashioned way.” Schematic design was done with perspective sketches, construction documents drafted by hand, specifications written for each project.

Office manager Barbara Whitney handled all correspondence, specifications production, and bookkeeping. The firm handled many different types of projects but specialized in remodels and renovations, many for institutional and government clients.

The impetus to move to computers truly began when important clients began requesting projects to be submitted in CAD formats.

The start

Nordfors admits that “The switching process—from initial commitment to the idea, to installation of computers—took nearly four years.”

This was in part because all employees of the firm were self-described “computer illiterates.” Before taking the plunge, they knew they would need a solid grounding in computers and CAD systems. The firm sent Guy Thomsen, a 45-year-old senior project architect with 20 years of professional practice, back to school for a nine-month intensive certificate course in CAD management. His thesis for the certificate became a study of the implementation of technology as well as the technology itself.

Thomsen, together with the rest of the firm, looked at the entire business process: How they communicated within the office, wrote letters, memos, obtained prints, conducted client communications, drafted details. Rather than laying down a CAD system on their current work process, they decided to sell their existing equipment, move to a new office, and create an entirely new environment designed around the new system.

Besides involving everyone in the decision process, they also decided that everyone would know how to use the majority of the applications—not just CAD but word processing, spreadsheets, and other support software.

Homework

They talked with other architects using CAD, getting a general picture of what they needed, then began looking at specific systems. It soon became clear they needed an expert, not just on computers but on how computers relate to architectural process.

They decided on a Macintosh platform. “Ease of use, and finding applications (especially CAD) specific to architecture were paramount to our decision,” says Nordfors.

Once the platform was chosen, Nordfors solicited four separate proposals. They had to include the hardware, software, all warranties, technical service and support, and training. “Of course we were looking for the best price, but the other elements of the bid—the training, technical support, warranties—were really what would make the difference. We were going whole hog from the start, so our major concern was how long it would take us to be productive.”

This process put them in contact with d’Arch, a local ArchiCAD reseller and Apple user.

Berry Yamashita and Dana Kruse at d’Arch are practicing architects as well as computer consultants, making them able to bring a unique combination of technical and professional expertise to Nordfors’s problem.

With d’Arch’s help, the firm bought the Macintosh 11ci (8MB RAM, 100MB hard drives) and 21-in. gray-scale monitors for everyone as a standard, base configuration. All architects, including project architect Ty Heim and intern James Cave, have the same basic software: Microsoft Word for word processing, the Excel spreadsheet, Aldus PageMaker, and ArchiCAD with Plotmaker.

“The more you do, the more memory and power your hardware has to have,” says

Bellevue (Wash.) High School

Using ArchiCAD on a Mac, exterior view (1) shows how 3-D makes images more understandable. A perspective view for remodeling the ensemble room (2) demonstrates that many views can be pulled from the same 3-D drawing. Two of many alternatives for a new retail space (3a, b).

 Architectural Record June 1993 75
Nordfors. The IIc turned out not to be powerful enough; they were upgraded to Quadra 700's early in 1993. Coordinating software revisions with System 7 revisions has also caused some glitches.

As owner, Nordfors also uses Microsoft Project for project scheduling. Office manager Whitney maintains the accounting package. All of the computers are wired for EtherNet, though the slower AppleTalk is sufficient, allowing anyone to print or plot directly from their computer.

School
“We wanted to minimize any downtime as a result of the installation, so we got right to work learning the software,” says Nordfors. “Our office is still small enough to gather around one computer, so we reserved two Fridays for basic training. A trainer began by running us through basic Macintosh skills—opening files, setting up the computer desktop, printing and saving. From there, we moved to basic software; opening Microsoft Word, typing a letter, formatting it. What quickly began to evolve was a shared excitement about what we were doing; people were spending weekends in the office on their own time, learning as much as they could. Nobody was sitting around wondering what to do or if to do it, another advantage of having everyone buy into the decision.”

By the end of two weeks, everyone had mastered the basics, and was ready to move on. Then d’Arch began with a series of training sessions on ArchiCAD.

Nordfors emphasizes using all the resources available for learning, some of them free. “In addition to our training, we attended user-group meetings, help sessions, and used the free technical support telephone numbers extensively. Rather than try and slog through it yourself, you can get a quick answer from someone who knows what they’re doing.”

Changes
The firm now uses its computers for everything, from sending electronic mail to designing new projects on CAD.

“One enormous change is that everyone in the office now does their own correspondence and specifications. We’ve reduced a five-step process to one step,” Whitney says. “We actually use one program—Microsoft Mail—more than any other single program. It’s really streamlined our interoffice communications.”

Nordfors himself uses Aldus PageMaker, a desktop publishing and graphics program, to turn out professional-looking documents and proposals directly from templates.

For CAD design and drafting, Nordfors uses Graphisoft’s ArchiCAD, an architecturally specific drawing and modeling program. “We may begin by sketching, but we move to the computer as soon as possible.” One of the real productivity gains occurs by reusing information generated in one phase, say design development, as a base for the next, a construction document. Now they do everything on CAD, except for small trace revisions. Even details are drafted and plotted using Plotmaker, ArchiCAD’s plotting layout utility. Thomsen and Nordfors estimate they use CAD for design about 40 percent of the time, and drafting 60 percent.

Thomsen credits ArchiCAD’s modeling and visualization tools with saving time in design development. “Many clients and even contractors have a hard time reading blueprints. By calling up a three-dimensional model, or doing a walk-through of a proposed design, the ideas become much clearer far more quickly, saving time and minimizing miscommunication.”

Working across different computer systems using different software, while still a concern, is becoming less of an issue as computer makers design more “open” operating systems. “We just finished a job where we had five different consultants, the majority working on AutoCAD DOS,” says Nordfors. “We exchange files on nearly a daily basis, and by using the DXF format haven’t had any problems at all.”

Changes in productivity
Overall, the entire office has seen its productivity rise. “First, basic communication. A lot of people in our profession have forgotten that we are a service-oriented industry,” says Nordfors. “And as in any service industry, communication—whether it’s with clients, contractors, associates in the field—is paramount. In the past, our correspondence level was too high for our resources, and a lot of these things didn’t get done.

“Secondly, the legal aspects. We do a lot of jobs, especially remodels and re-roofing projects, on very tight time frames. Changes that are made have enormous ramifications, and simple miscommunications can have grave consequences. The ability to put together what is essentially a legal document (a new detail or change order) quickly, print it out, and fax it out to the job site is becoming more and more critical.”

Guy Thomsen says computers let them handle more jobs than before. “In overall productivity, there was a time last year when we were swamped, more work than we could handle without hiring additional staff, people who might not be needed after the peak. Having computers and a CAD system in the office allowed us to level our human resources; David was able to put aside his administrative work and get to work on the drawings without leaving his computer.”

The computer has freed Nordfors to pursue new business and maintain tighter control over job management. Thomsen now has visualization tools that streamline his design process, even to explore new markets, and expand design services.

Return on investment
In treating the switch as a business decision, it helps to look at return on investment as a criteria for how much to buy. It is surprising for Whitney to see, for example, how many firms balk at the idea of spending $30,000 on a computer system, but won’t hesitate to spend that same money by hiring an additional person to do the same work.

Nordfors says the concept of payback is complex. “I think that there are really two separate issues to address. One is improved productivity compared to the way you used to get the job done. The second is the actual return on the investment in terms of doing things faster or expanding your scope of ca-
pabilities as a result of having the new technology. With the basics, letters and spreadsheets, it took about a month to get up to speed. CAD is more complex. I'd say it took us about six months before we were producing work as quickly as we had before. And drawing details still takes longer than by hand to finish from scratch. Yet, the greatest gains are realized over time; the ability to re-use and adapt existing data is where the real return happens. We keep getting faster every project.”

The Future?

Although happy with what they've achieved so far with computers, Nordfors' office staff sees their skills increasing as the technology advances.

David says, “We'd like to increase our ability to provide visualization services; very simple concept drawings, even at the early stage, have proved extremely helpful in explaining designs to clients. We see technological improvements—cheap data storage, quicker rendering speeds—helping us improve communication with clients.”

Suggestions for other firms

Having gone through the process themselves, Nordfors principals are happy to share their thoughts on how other firms might approach their own decision:

- Make the commitment, go all the way right off the bat if you can.
- Be prepared to change the way you work.
- Don't think of computers as just CAD—think of the entire work process; getting jobs, producing the work, getting the job out the door.
- When buying, deal with an expert—someone who knows architecture as well as technology. You can’t expect the software to work exactly the way you do.
- Before buying, do your homework. Read magazines, go to trade shows, visit other offices, ask questions.
- Treat it as a business decision; look at financing options, return on investment, tax gains from depreciation.
- Assign a CAD Manager position in the firm; someone with the motivation and knowledge to back up files, establish procedures, and handle day-to-day problems.

St. Martin’s Abbey and College

These drawings, sections of output prepared for St. Martin’s, show how 3-D CAD capability can enhance client understanding. One properly prepared drawing can produce both the views above and an infinite number of others, simulating what people would see as they walk through the area. Even the plan view, part of which is shown at left, is enhanced with shadowing.
Planning for the 21st Century

By Andy Smith, AIA

Snap! We threw away our pencils in 1989, and have enjoyed life in the ether ever since. That year, two Atlanta architectural firms, AECK Associates and Lord & Sargent, merged with a combined staff of 50. Today, Lord Aeck & Sargent includes 85 architects, interior designers, and related specialists.

It took nearly two years to combine our offices into a single one on a single floor. In an effort to amplify communications, we discarded all drafting tables and our new office design linked all staff desks, the library, the conference room, and project teams’ tables with a data network and telephone. The network supports electronic mail and the telephone system supports voice mail.

Just as architects once ground their own pigments to create ink and paint, so must we now educate ourselves in bits and bytes.

Andy Smith is a 1984 graduate of the Georgia Institute of Technology, with a Master of Architecture degree. Since graduation he has been using and implementing computer technology in the architectural office. He is focusing on information integration and design tools for the architect.

Lord Aeck & Sargent has been an innovator in software development, and in the use of new computer tools for both the design and the management of new construction. Their approach

ROMs and RAM. Only after the commands and button-pushes become second nature will we be able to focus again on content.

Why? Our design tools must support an ever-wider range of activity. Technology has introduced, literally, a new medium rich in geometry, color, and even motion. The challenge for the architect of the 21st century will be to become the “master of the media” as well as the “master builder.”

The business plan

All of this forced a new way of managing our business. The architectural business historically has not been capital intensive. Purchase of computers, software, and staff education would seem a new departure. The business plan of the merged firm was revised to include technology costs.

Out of this evolved our “$15,000 rule,” that for every hire $15,000 must be available for hardware, software, and training. By early 1989, the total had dropped to $12,000, reflecting the lower cost of hardware available for the desktop.

Hardware $4,000
DOS PC, 486 CPU, 50 MHz, 8 MB of RAM, SVGA color monitor, 120 MB fixed disk, digitizer tablet, network interface. In 1989 hardware costs were $7,000.

Software $3,000
Intergraph MicroStation PC. We buy in quantity, and save on the price somewhat.

Education $1,000
This is for formal education outside the office; in-house education is also provided.

Individual PCs are linked on a network with Novell Netware. The central server has a cluster of 3.2 gigabytes of disk space. Other devices on the network include laser printers, CD-ROM players, modems, and a scanner.

Indirect time $4,000
Investment is made in the first three months to move up the learning curve and become productive. In-house learning time actually costs more and is becoming the major part of the cost.

The entire office helps shape the plan to promote personal commitment, and it’s always being revised. There are series of weekly firm-wide staff meetings to provide a
has helped them expand by over 50 percent in the past four years—
while much of the profession has been struggling.

forum to debate aspects of the business and
to acquaint the staff with our goals and
direction.

Education
Discarding all drafting tables also meant
discarding the traditional mechanical skills of
drawing with pencil and paper. The new artist’s palette includes CAD, rendering tools,
pixel editing, desktop publishing, and black-and-white and color output devices.

In 1990, our response was to establish an in-house training program, Lord Aeck &
Sargent University, to provide education to
all staff in areas of technical computer use
and the practice of architecture. LASU uses
in-house seminars and professional education
services. The entire staff takes courses
in CAD basics, word processing, and
spreadsheets. There are “graduate” courses
in design and services delivery. LASU has
evolved into a forum for discussing and
developing new methods for integration of
technology into the office.

Hiring and hierarchy
Lord Aeck & Sargent does not employ drafters
as permanent staff; only architects, interior designers, project managers, and
specialists. There are no “secretaries” as
such; the job has grown into one of Project
Administrator. This reinforces the idea of
team play, where each member takes
responsibility for an individual component of
the process, committing to the success of the
entire project. Each team member has ac-
to all the team’s information. There is
no “middleman” information traffic cop.
This reduces hoarding of information for
empire-building.

The “matrix” management structure sup-
ports specialists such as a mechanical
contractor, materials expert, interiors librar-
ian, cost estimator, construction
superintendent, and several computer gu-
rus. They all roam the office, providing
teams with expertise as needed.

We also have established a family of me-
chanical, electrical, plumbing, structural,
and civil engineering consultants that shares
our vision. We write consultant agreements
in a manner that reinforces communic-
and open sharing of electronic data. We also
provide technical support to our consultants
as needed.

Within the office, we use a buddy system—
“ask whomever is in sight.” If a staff mem-
ber has a technical or architectural question,
he or she first asks a “neighbor,” other team
members, or the support staff, in that order.
After all, the person sitting closest is prob-
bly most familiar with the problem as it
relates to the project.

Our technology
The computer enhances our ability to refer-
everything together in a design. At
present, we work in 2-D drawings, words,
and numbers. Our vision is to move to a com-
plete integration of construction documents
and building-systems information.

Our concept is still one of “architect as mas-
ter builder, inventor, and artist,” but
“information manager” has been added.
Raw data, even piles of it, has minimal signi-
ificance. Only the retrieval and synthesis of
information transforms it into something
useful. We have begun to develop an idea of
“corporate knowledge” to track ideas and
practical experiences that all staff can tap
into for help.

The system should also help track all project
information and provide a simple way to re-
port its status (see chart, page 78).
But there are some caveats:

- If you draw it in CAD, the system should remind you to write the specification.
- If you specified it, the system should remind you to cost-estimate it.
- When you do the cost estimates, the system should retrieve the quantities from the drawing and the quality from the specification.
- Your project schedule should include drawing time, specification writing, and cost estimating.

Building technical expertise

To support all this, specialists focus on day-to-day activity. The specialists manage hardware and software purchases, education, the network, and project support for the project teams.

The specialists also develop new software as needed. In fact, CADDshare Corporation, a software-development firm set up in 1981 and now part of the firm, developed the AIA CONDOC for CADD software for Intergraph MicroStation. CONDOC is a methodology for document formatting and linking drawings to specifications.

We also negotiated with a local reprographic company to provide an in-house print facility that includes a large-format laser (electrostatic) plotter, large-format copier, and other traditional printing equipment in black and white as well as color. We would not have been able to experiment with such output devices without the partnership.

We see the future in this context for all architects:

- We will access the world’s databases to serve our clients better and to develop new client deliverables.
- We will communicate ever more frequently with consultants and clients during the design process.
- We will be able to manage, interpret, and present information with greater quality and clarity.
- We will bridge the gaps between client needs, manufacturing, design, and construction.

We will still be the master builders—as long as we are able to control the technology and shape it to our purposes.

Some indigestion

There have been some problems digesting all the technology. First, we underestimated how fast the firm would grow, and how fast each member would increase use of the system. Thus, fixed-disk space on the network is always insufficient. The network topology—how the wiring is arranged—is efficient but not flexible. When part of the system goes down, it can affect up to 10 users.

We also have underestimated the desire of staff to be trained on new software. We have yet to stabilize the process of choosing software packages, since it is constantly changing. We continue to spend too much time inventing the process.

Output always seems to be a bottleneck. Although we have a $60,000 plotter, there are always too many people clamoring for plots all at once. There seems to be no way to schedule that effectively for architects.

Intergraph Microstation was used to prepare these 3-D views of an engineering research facility. In the exterior view, note how parts of the building in the background, and how parts of the interior, can be seen; they are not masked by the foreground. The isometric view of a typical lab module is detailed enough to show possible interferences from ductwork and other utilities.

Art courtesy of Lord Aeck & Sargent
These days transportation facilities and utility projects are too often treated as necessary evils, and they have increasingly become contentious neighborhood intrusions. This issue features examples where architects seized the opportunity presented by a renewed emphasis on infrastructure planning and building to show that design has an important contribution to make. In new airports in Pittsburgh (page 100) and Denver (page 106), the architects created public spaces that counteract the disorientation caused by their vastness, while a new terminal at London’s Heathrow excels despite ad-hoc airport growth (page 108). A cooling plant in Minneapolis (page 112) and a telecommunications substation in Seville, Spain (page 116), make utilitarian facilities into good civic neighbors, rendering at once visible and understandable the usually hidden engineered viscera that undergirds our modern lives. Parking garages, typically eyesores, are, in skilled hands, elegant urban infill (page 126) or a forceful sculptural presence (page 130). Plans for the Jubilee Line Extension in London (page 120) show how a group of architectural firms unfettered by past conventions can bring new vigor to a difficult building type and, in effect, use design to repay the public for the enormous financial investment such facilities entail. James S. Russell

Manufacturers’ Sources listed on page 147
Uncivil Engineering

On Mercer Island, near Seattle, a small wooden park shelter perches over a lushly landscaped "lid"—a three-quarter-mile-long platform of trees and tennis courts set atop three vast concrete portals conveying 10 traffic lanes of nearly complete Interstate 90. That tens of millions of dollars and thousands of tons of concrete and earth were arranged to support this shelter—worth perhaps $60,000—and protect a few dozen homes from the noise of the freeway passing through their neighborhood, is emblematic of the bizarre realities of infrastructure-development today. In communities all over the country, bridges are closed or allowable weights reduced due to lack of maintenance; water mains errantly break; trains creep when they should roar—all because we don't seem to have the money to fix tracks, pavements, and utilities. In a few communities, as in affluent Mercer Island, huge funds are spent, vastly disproportionate to any conceivable benefit, in unremarkable projects whose primary goal is to move ahead a long-stalled project (expansion of the I-90 segment was debated for some 20 years).

Architectural historian Robert Bruegmann writes (in the Winter 1989 Design Quarterly), that infrastructure wasn't always done this way. "Thousands of stone viaducts, reservoirs, and lighthouses dating from the 19th and early 20th centuries stand as handsome reminders of America's pride in its infrastructure." Only a few decades ago, design attention was thought essential, producing such memorable structures as San Francisco's Golden Gate, or the beautifully landscaped parkways around New York City, whose ever-changing vistas gave testimony to the gracious life of the community they passed through. Today, it's rare to find a prominent bridge or utility structure that departs even slightly from the ultrastandardized civil-engineering kit-of-parts.

Last year, however, witnessed what seemed a sea change in the way we think about infrastructure. Transportation funding was approved (the Intermodal Surface Transportation Efficiency Act—ISTEA) that gave local officials much wider latitude in allocating funds to transit and a wide variety of "enhancement" (which can include bikeways, wetlands restoration, or historic preservation) based on needs developed through a comprehensive intermodal planning process. The ISTEA idea can be extended to other kinds of infrastructure planning, bringing a broader view than the civil-engineering tunnel vision that has produced the stupefying structures we too often see around us. Projects shown in this issue of Architectural Record focus on individual design and planning issues that have been too-long neglected in infrastructure development. Building a national consensus on what to build and how much to spend requires an understanding of broad trends, the subject of this essay.

Where's the money going?
Total federal spending on a wide variety of infrastructure categories has declined from about 5.5 percent of gross domestic product (GDP) in 1965 to 2.5 percent in 1990, well behind our international trading partners. Though many regions' state and local expenditures have covered some of the decline, the federal withdrawal has exacerbated a gap between the infrastructure "haves" (rapidly expanding newer communities) and the "have nots" (older communities with declining tax bases and a high percentage of decaying facilities).

The amounts various experts say the country must find to expand and update these systems are mind-numbing. Business Week projects $800 billion or more in spending including the "digital highways necessary for the information age." (Congress appropriated about $49.3 billion in aid for fiscal 1993, a whopping $10 billion of which goes to various environmental cleanup funds). Water and sewer agencies and the EPA think we need to spend $138 billion on systems and wastewater treatment over 20 years ($6.9 billion per year versus the $2.5 billion-plus Congress approved for fiscal 1993). This is already one of the fastest-rising categories of infrastructure spending. A nationwide fiber-optic digital data network (much of it privately financed) may cost $325 billion.

Airports, transit, and highways
The recession has cut airline traffic and reduced congestion considerably. Thus, the FAA claim that 58 airports will be "seriously congested," causing delays for 74 percent of the nation's passengers by the year 2000, may be overstated. Passenger taxes support much airport construction through a federal trust fund, much of which remains untapped as a deficit-reduction ploy. Financially troubled airlines are reluctant to bear much of the cost of new facilities, requiring New York's JFK Airport, for example, to drastically scale back a $3-billion rehabilitation. (A vast central departure/arrival building, designed by Pei Cobb Freed to unsnarl the traffic mess created by nine existing terminals, each with its own idiosyncratic arrival/departure scheme, was cancelled.) Many airports have taken advantage of a new three-dollar-per-passer departure tax to finance improvements. Over 34 years it will raise $2.3 billion to pay off Denver's new airport (page 106). Real congestion relief is hard to obtain, however, because a combination of cost, lack of available land, and citizen objections to airport noise makes runway expansion virtually impossible in much of the U. S. These concerns have killed, for now, Chicago's up-to-$10 billion third airport.

Transit funding has come under attack principally because all of the newer systems have been over budget and under ridership projections. "Actual patronage of [new] rail systems in nine cities was less
The stupefying bleakness of much of the civil-engineered landscape is creating new opportunities for architects and designers—if they can prove their value on every project.

than half of that originally forecasted,” the Department of Transportation found. The consensus of experts is summarized by Fragile Foundations, a report to Congress by the National Council on Public Works Improvements: “Systems in larger metropolitan areas are aging, deteriorating, and undercapitalized. Systems in smaller metropolitan areas are underused and overcapitalized.” An example: Los Angeles county projects spending $48 billion over 30 years on 210 miles of metro urban rail and 190 miles of commuter rail lines. The New York metropolitan area, by contrast, which has 25 percent of the entire country’s transit users and thousands of miles of track, has barely managed to scrape up $9.6 billion for a 10-year capital program (a response to decades of neglect) amid enormous budget pressures. It took $16 billion over the last 10 years just to bring service to generally accepted levels of dependability.

Highways command an overwhelming share of infrastructure dollars (it is 36 percent of federal fiscal-year 1993 infrastructure spending; more than four times the runner-up category). Last year’s ISTEA legislation established a six-year, $155-billion spending program. Of this, $80 billion can be used for either highways or transit. Compare this to the $129-billion price tag for the construction of the entire 43,000-mile Interstate highway system or the $174 billion spent in federal-aid highway funds (which cover a wider range of projects) since 1976. Still, various analysts report that up to 60 percent of roadways need some rehabilitation and 40 percent of bridges are at least “functionally obsolete.” Road and bridge needs are increasing exponentially for several reasons. Highways wear out faster than other systems; declining populations in older cities mean that there are fewer resources to repair aging facilities; low-density development patterns require a high percentage of highway miles per person. And suburban drivers drive more: Department of Transportation studies show growth in mileage driven vastly outpaces population growth and is much higher than the growth of highway mileage. To keep highways uncongested will mean building them at a pace many times faster than we do now.

Financing infrastructure
President Clinton has pledged vastly increased funding for infrastructure projects both in the short and long terms. Old ways die hard, however. Critics are already contending that ISTEA money is not being used as legislators intended, and Clinton’s jobs bill—which included money for many infrastructure projects “ready to go”—has at this writing fallen victim to familiar congressional gridlock. With enormous government budget pressures, the nation will likely turn more to user fees—dedicated fuel taxes, for example—that are usually applied exclusively to the system from which they are collected. Highways are likely to shoulder most of the burden, since the overall user-fee support for direct highway costs is still below any other infrastructure category, according to an ISTEA-mandated report, Financing the Future, by the Commission to Promote Investment in America’s Infrastructure. And highway taxes will likely be diverted in greater amounts to transit funding as an urban congestion-relief measure. Other experts advocate “congestion pric-
merican airport design is still reacting to the changes wrought by airline deregulation in 1977, which led to the hub-and-spoke system that dominates airline travel. Airlines transport passengers from any number of locations through "spoke" connections to a central "hub," and on to a multitude of destinations. The hub system gives passengers many more travel choices, thus improving ticket sales. The new $780-million Midfield Terminal at Pittsburgh International Airport is the latest hub incarnation.

In 1980, Tasso Katselas Associates (TKA) began developing a program and master plan with the Department of Aviation and the airlines. According to Katselas, all subsequent design decisions were measured against four established criteria: passenger convenience, operational efficiency, expansion capability, and economic effectiveness. The major differences between Midfield and previous hub airports are twofold. First, Midfield separates ticketing and boarding into "landside" and "airside" terminals. The landside terminal is flanked on the east side by grade-separated public transportation dropoff and pickup ramps, and on the west side by ramps for private automobiles. Katselas calls this doubling of the usual departing and arrival levels "the heartbeat of the solution" and essential to overall efficiency. Passengers check in at the landside ticketing level, descend to the transit level, pass through security, and catch the people-mover to the airside terminal. The farthest possible distance from parking lot to gate is 1.4 miles or 20 minutes by foot, automated walkway, and people-mover.

Second, Midfield's airside terminal is X-shaped instead of having separate linear concourses as at the prototypical hub of Atlanta and the new Denver airport (page 106). This allows passengers changing planes to access all 75 gates in the airside terminal on foot and via moving walkways rather than having to descend to a transit level as is required at the other two airports. Arriving and departing passengers and those transferring to commuter planes use the people-mover to the landside terminal. Midfield's principal tenant, USAir, invested some $40 million in computers to provide up-to-the-minute information on flight schedules and a baggage-handling system with lasers to scan bar-coded baggage tags. The result is a veritable showpiece of current airport technology.

The X's four concourse arms are surrounded by dual apron lanes running in opposite directions and its core is a mini-mall of restaurants and shops, diversions for the mostly transfer-passengers. TKA's study of its airside terminal design, done with the Department of Aviation and FAA personnel, concluded that dual lanes ease airplane movement, servicing, and parking; current projections show savings between $10 to $15 million per year in fuel costs. Other measures to prevent interruption of taxiing airplanes include 12-foot-deep tunnels for service vehicles. During construction, changes in FAA security requirements prompted a new look at the overall accessibility of the tarmac and reinforcement of tunnel security.

For all of its innovations, Midfield's outward appearance is disappointingly like a conventional office building, especially when compared to such great monuments of flight as Eero Saarinen's TWA terminal at John F. Kennedy Airport. Barrel-vault roofs mark primary public spaces, but these are overpowered by the complex's sheer size (opposite middle). Steel canopies that cantilever 40 feet to cover dropoff ramps, while elegant (previous pages), are only accents to the precast-concrete framing. The complex projects a public face of brisk efficiency rather than being an uplifting symbol, more in keeping with the expectations of today's jaded air traveler.
The landside terminal (photo top right and top section) is dominated by a skylit vaulted roof supported by 120-foot-long steel trusses. Because of the many ways the terminal can be accessed, movement systems are complex. Moving walkways connect the terminal to the parking garage (rental car lots are on the lowest level). Departing passengers are either dropped off along the upper roadway, where they are sheltered by 40-foot cantilevered steel canopies (pages 100-101), or ascend from parking to ticketing level before descending to security and the transit station to the airside terminal. (Commuter planes leave from the landside terminal.) Arriving passengers descend from the transit-station level to the baggage-claim area. The principal innovation of this hub airport is the X-shaped airside terminal. Double-lane aprons surrounding the concourse arms permit airplanes to move between gates and taxiways with less stop-and-start interruption, thereby saving fuel. Since 65 percent of passengers using the Pittsburgh airport are in transit to another destination and never actually enter the landside terminal, the architects made the airside terminal's core a mini-mall of restaurants and shops as a layover diversion (top left and opposite left). Each concourse arm has three moving walkways (opposite right) connecting the 75 jet gates. TKA’s updated master plan allows for expansion to as many as 158 jet gates. The commuter concourse can grow from 23 gates now to 48 gates.
Credits
Midfield Terminal Complex
Pittsburgh International Airport
Pittsburgh, Pennsylvania
Owner: Allegheny County—
John Graham, director of
capital projects; Peter Florian,
chief engineer of capital
projects
Architect: Tusso Katselas
Associates—Tusso Katselas,
principal-in-charge; George
Perinis, project manager;
James Pappas, chief architect;
Felix Cardella, III, Gavin
Mellor, Jane O'Neill, C. Ayhan
Ozan, Jose Heraud, Philip
Rinaldi, John Foley, Wilmer
Mutz, Greta Penn, Ronald
Dellaria, Joseph Serrao,
project team
Engineers: Gensert, Bretnall &
Associates (structural);
Michael Baker, Inc. (civil/
mechanical/electrical);
Reynolds, Smith & Hills
(mechanical/electrical)
Consultants: Breier Neidle
Patrone Associates (baggage);
Coffeen Fricke & Associates
(acoustics); Irene Pusinski &
Associates (graphics); Joseph A.
Hajnas & Associates
(landscaping); Theo Kondos
Associates (lighting);
Wackenhut (security)
Construction Manager: Mellon
Stuart/Dick Enterprises

General Contractors: P. J. Dick
Construction Company; Gust
K. Newberg Construction
Company; Mostes
Construction Company
"Snow-Capped" Symbol

Currently under construction, Denver International Airport's landside terminal will be a tentlike port-of-call for 50,000 to 100,000 passengers a day.

Gateway and aerodynamic symbol, the landside terminal at the Denver International Airport harks back to the Eero Saarinen school of terminal design. Controversy over the terminal's cost—and whether it was needed—meant that visual drama was as important to the project's success as planning efficiency and economic feasibility. Says principal-in-charge-of-design Curt Fentress, of C. W. Fentress J. H. Bradburn and Associates, "It] needed to be unique to Denver, a form that would signify the meeting of the mountains and the plains."

The sheer size of the 1.3-million-square-foot terminal and the need for a fast-track, low-maintenance solution led the architects to a fabric-roof design for the 900-foot by 240-foot Great Hall, the primary public space. It recalls another instant infrastructure landmark, the Haj Terminal in Jeddah, Saudi Arabia, by Skidmore, Owings & Merrill [RECORD, September II 1988, pages 74-75]. In Denver, the tented structure's peak-and-valley profile consists of double layers of 0.28-inch-thick Teflon-coated fiberglass supported by two rows of steel masts and reinforced against wind and snow loads by steel cables. Construction of the roof began last spring and should take one year to complete; minor repairs to damaged areas can be made by welding on a new layer of fabric. The light and airy effect of the tensile structure is more than just imagery—at night, 12 percent of interior light is transmitted, giving the complex a soft glow, and during the day the fabric transmits 10 percent of the daylight while preventing solar-heat gain. According to the architects, the material reflects 70 percent of direct sun, thereby reducing artificial lighting and cooling costs.

Like Pittsburgh (previous pages), Denver has a two-sided landside terminal. Public transportation and private automobile access, however, is stacked on three levels on both sides of the building (section opposite). Departing passengers ascend from parking and lower dropoff levels to level six for ticketing (plan opposite), where they join passengers dropped off by private automobile. They then proceed to the glass-faced, fabric-roofed atrium at level five, which provides sweeping mountain views, to pass through security before boarding the Automated Ground Transportation System (AGTS)—a "people mover"—at level four that connects to linear airside concourses. Arriving passengers will take the AGTS from concourses to the landside terminal and ascend to baggage claim at level five before exiting at that level or descending to level four for private-vehicle pickup.

The landside terminal is expected to be completed this year at a cost of $1.9 billion, including parking structures and roadways. A master plan provides for future expansion in modules linked by open spaces. Phase I has three airside terminals, totaling 90 gates, designed by different firms. At final build-out, the airport will have 240 gates.

Karen D. Stein

© Robert Beck photo courtesy Birdair
1. Existing Terminal One
2. "Nose" building
3. CTA lounge
4. Shuttle lounge
5. Belfast lounge
The ad-hoc appearance of the plan for Piers 4 and 4A (opposite) came about because the supposedly temporary addition is tucked where space was available. It handles passengers in three domestic categories. Northern Ireland and the Channel Islands are considered part of the Common Travel Area (CTA). Baggage may be examined and passengers may indulge the British obsession for buying duty-free goods. The "nose" building segregates regular domestic passengers from CTA passenger and travelers to and from Belfast, for whom extra security requirements apply. An outer corridor in the "nose" building directs CTA passengers through a link to the CTA lounge (containing a snack bar and duty-free shopping) to gates. Arriving CTA passengers claim baggage in the "nose."

So that the links and piers would not exceed minimal sightlines, they were framed in low, elliptical rolled-steel hoops (the corrugated metal cladding supplies rigidity). Heat pumps serve the departure lounges through a suspended boom, avoiding lowered ceilings. Double-glazed, gasketed windows follow the profile of the piers (opposite bottom). Wing-like light fixtures (left) provide up- and downlight and connections for public address and emergency lighting.

Credits
Pier 4/4A, Heathrow Airport
London, England
Owner: Heathrow Airport Ltd.
Architect: Nicholas Grimshaw & Partners, Ltd.—David Harris, project director, Hin Tan, project architect
Engineers: B. A. A.
Consultants (structural/mechanical/electrical/plumbing/electronics)
Consultants: W. T. Partnership (quantity surveyors)
General Contractor: AMEC Projects, Ltd.
Straightforward planning provides a parking garage on the street level, a mechanical room for the chillers on the second floor, and cooling towers on the roof. A lone worker monitors chiller operation from a soundproof control room served by adjacent lockers (right in plan and section). A mezzanine above is used for auxiliary pumps, control units, and refrigerant storage. The angled shape of the steel pipe and vinyl-covered chainlink crown of the building, which screens the cooling towers, came from more than a desire for dramatic effect, "expressing the kinetic spirit of the machine processes involved," according to project architect Bruce Paulson. "We tried a straight-wall solution, but there was no way to support it without the required bracing interfering with the towers. By angling the structure, it could be self-supporting except for connections to the concrete end walls." The open mesh allows for free passage of the massive amounts of air needed in the evaporative process. The interior of the machine room (photo opposite) is painted concrete and concrete block lit by the round glass-block windows. Extra space awaits a third chiller.
Credits
First Avenue Cooling Plant
Minneapolis, Minnesota
Owner
Minneapolis
Energy Center
Architect and Engineer:
Ellerbe Becket—Douglas Maust, project manager; William Huntress, project designer; Calvin Olson, chief architect; Bruce Poulson, project architect; Gary Tosel, project mechanical engineer; Cliff Ingles, project structural engineer; Allan Wenzel, project electrical engineer; Theodore Lee, project landscape architect
General Contractor
M. A. Mortenson Company

David Cohn is a freelance writer based in Madrid.
Clear Signal

Down the Tube

The London Underground is the world’s oldest urban transport network and one of the most complex. It also has a distinguished architectural heritage. It began as separate companies that were unified during the 1920s largely through design guidelines established by then managing director Frank Pick, acquiring its modern identity epitomized by the famous roundel symbol. Pick also commissioned Charles Holden to design new suburban stations. While these are now much-loved landmarks, London Underground has done little to continue this pursuit of excellence in the intervening 80 years.

A $2.7-billion plan to extend the Jubilee Line south and east from central London in a loop to Canary Wharf and Greenwich promises to make amends. The five-year project has some government funding and now awaits finalization of private investment arrangements (some from the beleaguered owners of Canary Wharf). Then site work could begin on 10 miles of track (mostly underground), 11 new station stops (one exists), and many other buildings.

Unlike Pick and Holden, who produced a monolithic evocation of the company, the Jubilee Line Extension reflects the tenor of the times, exchanging paternalism for pluralism by employing a roster of architects whose work is similar in spirit, but far from uniformly corporate. The impresario behind this sophisticated vision is Roland Paoletti, who came to London Underground from a position as architect of the Hong Kong metro. Paoletti considered appointing a single architect for all 11 stations, but quickly rejected this course for several reasons: station sites vary; parallel design would speed the project; and smaller firms, he thought, would be more imaginative. While fee proposals and qualifications were taken seriously, the most important criterion was design quality.

“I tried to choose 11 architects that fit together,” says Paoletti. “They are all modern, all structuralists. The uniting idea is the exploitation of civil structure.” The Jubilee Line work provides an economical introduction to the rising stars of British architecture. Norman Foster and Michael Hopkins are merely the best known. Others include Ian Ritchie, Ron Herron (once of Archigram), Troughton McAslan, and Alsop and Stöhrner. Who was not chosen (high-tech romantics Richard Rogers and Nicholas Grimshaw) is as instructive as who was.

Paoletti regards the San Francisco BART as a watershed. There the system architects forced a reappraisal that led to the appointment of several architects asked to design individual stations using a common kit of parts. To develop this idea, Paoletti asked the architects to propose designs for elements that will ultimately be incorporated as unifying standards in all the stations. (He has yet to choose from among the proposals.) Paoletti’s taste and trust in his choices (he could have chosen firms with a less-risky esthetic) means that he and the architects share something akin to an intellectual kit of parts. If Paoletti seems to be acting as a patron, it is what he calls “accidental patronage.” The Extension could stand as a new exemplar of an architectural corporate identity in the 21st century.

Hugh Aldersey-Williams
An extension to the Jubilee Line will reverse the neglect of London Underground’s design legacy, showcasing a dozen of Britain’s best architects.

1. Waterloo
The sketch suggests the way accommodations for the new Waterloo Station fit within the piers supporting the Edwardian British Rail terminal. Jubilee Line Extension Architects, a consortium of London Underground’s design staff, developed the scheme. (See also figure 7).

2. Stratford Market
A parallelogram building spanning 100 meters covers 11 maintenance bays at the East London terminus of the Jubilee Line Extension (JLE). Designed by Chris Wilkinson Architects, the roof structure is based on a 30-deg diagonal grid of 24-meter-deep lattice trusses.

3. Stratford
Designed by Troughton McAslan, the sectional model shows stainless-steel-clad wing-like canopies over the tracks for both the JLE and the Docklands Light Rail. A zinc-clad wall separates the public part of the station from two-story accommodations for personnel.
The program by London Underground’s architect, Roland Paoletti, asked architects of the new Jubilee Line to admit daylight and avoid decoration.

4. Canary Wharf
A glazed, scallop-like canopy marks this long-overdue link to the ambitious but troubled centerpiece of London’s Docklands. Designed by Sir Norman Foster & Partners, the new station will interconnect with an existing but inadequate Docklands Light Railway station, providing a peak passenger flow of 23,000 persons per hour. Arriving passengers emerge gradually into daylight and a public park from under the shelter of the canopies (4, 4a). Inside (4b), space is scarcely more constrained as passengers descend to a broad underground “street.” The 19 escalators spear the space, typically off-axis, a recurring motif of Foster’s that has been seen from the Sainsbury Centre to the Hongkong Bank.

5. North Greenwich
The use of space and color is particularly dramatic at this entirely new station. Designed by Alsop and Störmer, the station has a roof supported by angled concrete columns that appear to stride through a double-height space. Cables from the roof suspend walkways, which appear objectlike over the tracks.

6. Southwark
Pursuant to Roland Paoletti’s brief, the perspective sketch of the lower levels at the new Southwark Station, by MacCormac Jamieson Prichard, shows shafts of light providing a visual link between the upper escalator concourse (6a, opposite) and track level. A subterranean concourse provides a balcony overlook to the tracks (6).
7. Waterloo
Waterloo is one of several stations in which Paolelli asked the architects to propose tunnel cladding panels and platform furniture, signage, lighting, and advertising facilities for inclusion in systemwide guidelines. Though each JLE station is unique, these elements of the designs are meant to be consistent, updating London Underground's corporate identity. One of these common elements would be new sliding transparent barriers at trackside. Currently, the system's passenger platforms are open to the tracks, not adequately preventing accidents and potential suicides. The in-house Jubilee Line Extension Architects designed barriers (7) that will eliminate these risks while providing the sense of openness offered by views across the tracks and retaining a clear line of sight to billboards located on the far tunnel wall. 7a: concourse and ticket hall, set within the structure of the existing Waterloo railroad station.

8. Bermondsey
Ian Ritchie Architects provides a graphic expression of the way light is reflected down into this deep station interior through two roof-mounted scoops (see also figure 11). Huge horizontal braces cross the light wells diagonally. The model shown is incomplete, omitting a six-story commercial development to its left. Even without this addition, the project has more impact on its immediate neighborhood than most of the other stations. Ritchie's is a straightforward functionalist solution, avoiding the obvious "public works" symbolism in the aboveground structure, which was a hallmark of stations designed by Charles Holden in the 1920s and '30s for London's suburbs.
Though platforms will conform to a common reinvented house style, each station "becomes personal to the architect as you move away from the platforms," says Paoletti. Of the 12 JLE stations, all but two connect to other London Underground lines, and several must also offer transfers to British Rail commuter-rail or long-distance stations.

9. London Bridge

London Bridge Station, by Weston Williamson, incorporates proposals for many of the new design elements that will be common to the JLE stations, including his version of sliding glass doors adjacent to the tracks. The final design of these standardized items has yet to be decided. The cylindrical tunnels at platform level (9) remind patrons of the configuration of the existing system. The architects have devised modular infill for the cellular, ribbed-steel tunnel lining to accommodate signage, utilities, and acoustical treatment behind cast-iron facings (escalators to platform, 9a). Additional lighting and public-address speakers are attached to a T-shaped extrusion suspended from the ceiling. The circulation plan (9b), illustrates the complexity of the conditions at many of the stations, which must interconnect track and street levels with minimal opportunity for new above-ground architecture. New concourses link the existing Northern Line with the JLE line platform.
10. Canning Town
Troughton McAslan’s design for this surface station is understandably more explicit than the subterranean stations in its handling of the engineering tradition that informs most of the JLE designs. British Rail and Docklands Light Railway services connect with London Underground trains here, and all three lines are brought into close proximity. The Docklands line runs above the Underground line in a cage-like superstructure raised on concrete supports (10). In plan (10a), the JLE runs under the Docklands Light Rail with British Rail tracks shown middle, and a bus transfer station shown at the bottom. Patrons cross to any of the at-grade platforms through an underground concourse.

11. Bermondsey
A section through the station (also shown figure 8) shows that the depth of the new rail route is shallower than many branches of the existing system, enabling use of cut-and-cover construction. Under these circumstances, architect Ian Ritchie has made access to platforms and the provision of natural light much more generous than is usually seen in subways.
Perpetual Motion

Leamington Municipal Transit Hub
Minneapolis, Minnesota
Ellerbe Becket, Architects
occupying almost a full city block between the new convention center and Minneapolis's central business district, the nine-level Leaming-
ton Municipal Transit Hub could easily have been a black hole sucking life out of an urban area undergoing transition. Certainly, many other parking structures of this size have been exactly that. But instead, the 2,100-car garage and transit facility brings a re-
freshing sense of animation to its setting and fully engages its surrounding streets.

A series of public hearings at the beginning of the project helped identify two seemingly contradictory goals, which Ellerbe Becket set out to resolve. “The city wanted it to look like a building but be clearly identifiable as a parking garage,” says Rich Varda, the partner-in-charge. “No one wanted a static structure with long hori-
izontal slots.” In addition to seven levels of parking, the facility would also include an express-bus station one level below the street and a shuttle-bus station on-grade.

As designed, the building is a poured-in-place concrete structure with post-tensioned beams. Epoxy-coated reinforcing bars and microsilica added to the concrete help reduce damage from water penetration and cracking. To make users feel safe from crime, the architects used nonreflective green-tinted glass for stair and eleva-
tor towers and created many openings to view interior spaces. A security office with a bank of television monitors is on full display on the ground floor and lighting levels are kept high (at least 5 footcandles in parking areas). To engage the street, the building bows out at the center of its Second Avenue facade and then curves inward at the corners so the sidewalk and pedestrians are drawn inside. Retail space at two corners also helps create active street frontages.

In designing the building's exterior, the architects took two differ-
ent approaches. Because the city asked that the structure's ramps—
those elements that scream "garage" the loudest—be played down, Ellerbe Becket clad the north and south elevations with tightly spaced horizontal bands of precast concrete. On the more public east and west elevations (Second and Third avenues), the architects used large double-floor openings that reveal the concrete frame within and reduce the apparent size of the building. These facades also angle slightly away from the street (at about 5 degrees), widening the sidewalk where people congregate and introducing a sense of animation. This same angle appears as a vertical slope on the glass face of the main stair tower and in a variety of details such as handrails and guardrails. The cumulative effect of these subtle gestures is to chip away at the building type's traditionally boxlike nature.

Traffic circulation within the garage is organized as a "double-
threaded helix," in which cars can move along either of two intertwined loops on each level. The pattern enhances visibility of parking spaces from the loops and is an efficient way of moving many cars in and out of the garage at one time. Clifford A. Pearson

The east facade (opposite) in-
cludes retail on the ground floor and double-height open-
ings that make the seven-level structure appear to be a three-
story building. The west facade (above and top) is the most pub-
lic side of the building and has a skywalk on the second level connecting to a nearby hotel.
Precast concrete used as cladding for the exterior of the building (above) picks up the color of the nearby convention center. A shuttle-bus station (right) is located on the street level just behind the building's main lobby (opposite left). An express-bus station is located one level below the street (opposite right). Because large numbers of people from the convention center arrive and depart at one time, the architect and traffic engineer designed a double-threaded helix pattern for circulation within the garage (plans opposite). Each trip around the loop takes a car up two levels.
Credits
Leamington Municipal
Transit Hub
Minneapolis, Minnesota
Owner: City of Minneapolis
Architect/Engineer: Ellerbe Becket—Rich Varda, design principal; Greg Nook, project director; Pat Bougie, project architect; Mark Wentzell, designer; Scott Saunders, structural engineer; Stan McCoy, mechanical engineer; Doug Renier, civil engineer; Steve Earl, electrical engineer; Randy Manthey, landscaping
Consultant: Carl Walker
Engineers (parking)
Construction Manager: Kraus Anderson
Although not the most glamorous building type, parking structures offer architects the chance to show off their knowledge of architectural anatomy. Free of many of the demands made on enclosed buildings, garages allow designers to focus on expressing structure and exposing elements usually hidden by curtain walls and cladding. Bohlin Cywinski Jackson took full advantage of this opportunity with its Irving Avenue Garage at Syracuse University. “This was a wonderful chance to show the building’s bones, the structure itself,” explains Peter Bohlin, partner-in-charge of the project.

On full display is the garage’s poured-in-place concrete framing—rectangular columns dividing two aisles, and five levels of parking slabs set within exterior columns. Egress towers stand at the northeast and southwest corners, while a third tower supports a steel bridge connecting the garage to the main part of the university campus. Each of the key elements—frame, ramps, towers, and bridge—is clearly differentiated from the other, reflecting an approach often found in Bohlin Cywinski Jackson’s work. Poured concrete is post-tensioned and includes silica fume, a fine-grain additive that makes the material less porous and prevents cracking caused by temperature changes and road salt. Because the amount of expansion and contraction in concrete columns varies with their exposure to the elements and their structural loads, the amount of reinforcing built into each column had to vary as well. As a result, the garage’s columns were “tuned, almost like a musical instrument,” says Frank Grauman, the project director. In general, columns closest to the perimeter were designed to move the most and those near the center the least. Instead of ramps, the garage has sloped floors for cars to drive up or down; only the curved ends of each floor are level.

Located on a sloping site, the 433-car garage connects to the central part of campus via a steel-frame pedestrian bridge supported on poured-concrete towers. To help negotiate the change in grade, the garage features a floor-to-floor height of 12 feet, instead of the more typical nine feet. As a result, the structure has an open, skeletal feeling which the architects carefully enhanced by using post-tensioned cables rather than solid panels as perimeter barriers. By making the garage as transparent and sunlit as possible, BCI dealt with a growing concern for security while also creating a structure that reaches out toward, rather than shutting itself off from, its surroundings.

Clifford A. Pearson

While cars enter the garage at either of the short ends of the structure at grade, pedestrians enter from the top level via a steel bridge (above) connecting to the central part of campus. For security reasons, stairs inside the access towers and the bridge tower (above center and opposite) are wrapped in glass and open to view. The 433-car garage was designed so another level of 88 parking spaces could be added. The bowed portion of the garage (opposite) provides room for cars to turn and helps express the movement of traffic inside. Worm’s-eye view (axonometric) shows the structure’s concrete frame.
Focus on:
Value-added Infrastructure

The word "infrastructure" conjures up the unglamorous, stark appearance of concrete sewer plants and grim transport structures. But some architects, designers, and their clients have found good reasons to bring better design to projects that might otherwise be gross intrusions on their communities. Input from a merchants' organization in New York City prompted the design of a fanciful structural steel-and-glass canopy over a subway station entry stair. In Seattle, an environmental-design firm used berms, native plants, and grasses to blend a sewage-treatment plant with an adjacent park.

Franklin Street Station
New York City
Karahan/Schwarting Architect

West Point Treatment Plant
Seattle, Washington
Danadjieva & Koenig, Environmental Designer
CH2M Hill, Prime Engineer
Also near Seattle, impetus to remodel Sea-Tac International Airport’s concourses was in part to provide a warm civic welcome, in recognition that the airport is a major gateway to the Pacific Northwest. Likewise, the sculptural presence of the High Falls Garage in Rochester, N. Y., acts as both a gateway to the historic district and a tribute to that city’s industrial heritage. Finally, a power-distribution station in Los Angeles got a gutsy, design-committee-approved facelift. All of the projects prove that infrastructure need not look crude or dull.

Charles D. Linn

Station rehabilitation
Starting with an Otto-Wagner-inspired canopy, Michael Schwarting's renovation of the Franklin Street station has brought new life to a typically bleak subway station. The project was accomplished with Economic Development Corporation funds, and included input from a neighborhood merchant's organization which insisted on the canopy. The structure draws on an industrial vocabulary, using exposed bolts and columns built up from steel plates and angles as a structural system. A vaulted roof of terne metal crosses a grid of sand-blasted glass block that allows daylight into the stairwell. Schwarting reused the existing torchères and handrailings, and notes, "When viewed head-on, the lamps and vaulted canopy combine to look like a train pulling into the station." Below ground, the grungy concrete platform floor has been veneered with terrazzo tile. "We had a hard time convincing the transportation authority that it would be durable enough," laughs Schwarting, "but they liked the fact that chewing gum would blend right in." The walls of the station received new tile, but the original mosaic-tile station signage and border near the ceiling were left intact. Indirect fluorescent uplighting softens harsh shadows.

Out of sight, out of mind
The environmentally sensitive site of the West Point Treatment Plant created unique design challenges for environmental designers Danadjeva & Koenig Associates and prime engineers CH2M Hill. In order to receive shoreline-use permits for the $578 million project, the Municipality of Metropolitan Seattle had to submit plans for controlling noise and odor from the plant, to conceal it from view, and to restore the landscape. Nestled on a spit of land between Seattle’s Discovery Park and Puget Sound (plan, opposite left), several treatment plants have been located here over the years because unique local off-shore currents always carry outflow away from shore, regardless of tidal conditions. The current expansion (opposite right) is being jammed into 32 acres. CH2M Hill's engineers designed the plant to maximize capacity while minimizing footprint. Danadjeva & Koenig designed a bermed zone around the plant that will be used to screen it from view. The soft earth-forms (model, left) eliminate the need for hard, man-made surfaces like high walls and fences. The bermed areas will have recreational trails, and will be seeded with native plants and grasses.

Architectural Record June 1987 137
Seattle-Tacoma International Airport Concourse Improvements
Seattle, Washington
NBBJ, Design Architect
Leo A. Daly, Production Architect

High Falls Garage
Rochester, New York
William Rawn Associates,
Design Architect
LaBella Associates, Architect of Record

Sun Valley Distribution Station
Los Angeles, California
LPA, Inc., Architect
Facelift for flyors
Sea-Tac International Airport’s Concourses B, C, and D were a disparate amalgam of styles and construction types that had been erected since the 1960s. “The prime mission of the remodeling was to improve the airport’s appearance as a gateway,” says NBBJ’s project designer Rick Zieve, “which is very important, since Sea-Tac is the first thing people see upon their arrival in the Pacific Northwest.” The project involved adding from 12 to 38 feet to the concourse widths, and brightening passenger waiting areas through the expansion of view glass areas (left), and the addition of translucent insulated fiberglass-panel clerestories. The panels are split (opposite) to give the concourses a strong nighttime identity. In addition to interior and hvac improvements, the exterior structure of all three concourses was wrapped with white metal panels to unify their appearance. “As it becomes more and more difficult to build new airports, we’ll see more airports expand and upgrade by remodelling existing concourses,” says Zieve.

“Primal imagery” enlivens parking garage
Architect Williams Rawn says that because parking garages function as portals to downtown shopping and working districts, they may be the most important urban building type in medium-sized cities. “People have a choice. They can drive to the suburbs or they can drive downtown. If you build ugly parking garages, the people won’t come.” The entrance and stair tower of the High Falls Parking Garage will make it a delightful destination. Rawn describes the huge masonry pyramid where autos enter and sculptural steel stair tower as “primal imagery” that is inspired by the fragments of locks, raceways, and iron construction along the nearby Genesee River. Atop the stair tower, tilted screens will be used to reflect laser light to mark the garage during downtown Rochester’s special night lighting events. “You have to give Rochester Mayor Thomas Ryan a lot of credit for this garage,” says Rawn. “Parking garages are extremely important elements of the urban landscape. It takes a lot of courage on the part of politicians not to just keep on building things the way they always have been.” The garage will be completed early this winter.

Order from chaos
The improvements to the Sun Valley Distribution Headquarters, an electric-utility-operations complex, uses a vocabulary of industrial materials—concrete block, steel mesh, and structural-steel framing—to unify an assortment of unrelated buildings dating from the 1950s. The grounds are wrapped by an articulated assembly of block and steel mesh (opposite) that serves as security fence, courtyard wall, and interior partition. “The fence creates a dancing horizon line on an otherwise flat suburban wasteland,” says architect Jim Wirick. Brilliantly colored I-beams cradling steel stairs mark the entries to two of the buildings, with a huge white steel drum overhead marking the entry to the main structure (left). This high-style was the mandate of a local design board, the Cultural Affairs Committee, a group that oversees the design improvements to publicly owned property. “The Department of Water and Power had to start getting design approvals on improvements to their property about five or six years ago,” says Wirick. “Coincidentally, that’s also when they started hiring outside architects to do the design work.”
400. Glass-fabrication guide
A 28-page architectural catalog highlights recent high-rise curtain-wall projects using reflective, monolithic, and coated-glass products. Performance data are charted for each glass type and tint, and includes both ASHRAE and European U-values. Viraco, Owatonna, Minn.

401. Venetian-glass panels
A brochure on Italian Formelle decorative glass outlines the design potential of the colorful panels, and explains the technical support available through the firm's New Jersey office. Panels are available in single-, double-, and triple-glazed, shatterproof, and bulletproof configurations for indoor and outdoor use. Leucos USA, Inc., Edison, N.J.

402. Low-E for vinyl windows
Thermaflex is a proprietary, two-coating low-E high-performance glass designed for this maker's welded-vinyl replacement window. The system—frame, glass, and spacers—is said to have the highest R-value of any similar double-pane window. Glass has no color reflection or haze. CertainTeed Corp., Valley Forge, Pa.

403. Colored-wire labeled glass
Fire glass that meets CSPC 16 CFR-1301 Cat., ANSI Z97.1, and ASTM C-1086 now offers six standard colors of wire mesh: black, red, blue, green, white, and yellow. The 1/4-in. laminated clear float glass is awaiting certification with ETL as to its 20-minute fire rating. Priced comparable to standard wire glass. Federal Doors, Inc., Fairfax, Va.

404. Energy-saving curtain wall
A color brochure illustrates recent Visionwall high-rise installations in the U.S. and Canada, and details insulating-unit components with cutaway drawings. The suspended-film system has a total-window R-value of 6.5, and is available for curtain-wall, punched, and strip-window applications. Visionwall Technologies, Stow, Mass.

405. Translucent-sheet skylight
The Rodeca skylight and panel is a modular polycarbonate structured sheet with a self-supporting aluminum-frame system. Suitable for both vertical and sloped glazing, it comes in clear, bronze, opal, green, and blue tints. Co-Ex Corp., Rocky Hill, Conn.

406. French architectural glass
A design guide features flat, reflective, and patterned glass, and glass-block products, made by Saint-Gobain and sold in the U.S. All patterns are illustrated in color, including 15 cast-glass styles in the new Masterglass line. Euroglass Glasrep Corp., White Plains, N.Y.

407. Chemical-resistant acrylic
A six-page guide describes Acrylite and other acrylic-sheet products, polycarbonate double-skinned, and monolithic materials, including glazing with superior abrasion- and ultraviolet-resistant characteristics. Technical sections cover the special installation requirements of plastic glazing. CYRO Industries, Mt. Arlington, N.J.

408. High-performance glass
A 24-page catalog discusses performance and technical data for all LOF architectural glass, including Ever-Green, Energy Advantage Low-E, Eclipse reflective, Mirropane E.P., and a range of clear and tinted float-glass options, illustrating each glass with built projects. Libbey-Owens-Ford Co., Toledo, Ohio.

409. Lexan glazing
A colorful 20-page brochure illustrates Lexan polycarbonate in all its architectural permutations, including the most impact-resistant systems for almost-vandal-proof glazing and security enclosures. Details demonstrate suggested wet, dry, and dual-glazing installations. General Electric Co., Structured Products, Pittsfield, Mass.

410. Designing laminated glass
DuPont's Imagine booklet and companion videotape showcase dramatic architecture made possible with laminated glass—in skylights, floors, large atria, and secure enclosures—explaining its acoustic, solar-control, storm-resistant, UV-limiting, and decorative properties. E. I. du Pont de Nemours & Co., Inc., Wilmington, Del.

411. Glass-selection guidelines
A 24-page catalog covers glass-selection criteria: structural and thermal strength, solar-control tints and coatings, frit-pattern options, and spandrel and cladding glass in solid colors and patterns. All glass is illustrated as used in recent built projects. PPG Industries, Inc., Ford City, Pa.

Continued on page 159

142 Architectural Record June 1993
Infrastructure continued from page 99

national issues to respond to some larger civic need. Indeed, ISTEA mandates are wide-

planning, so that highway and transit facilities are genuinely complementary. Los

Angeles architect William Fain is taking the concept even further, seeing in his city’s plan for 450 miles of mass transit an oppor-
tunity to piggyback a system of greenways for a city that sorely lacks public open space. (The plan would also take advantage of unused rail rights of way and flood-controlled riverbeds.)

Thinking on this scale requires a kind of citizen involvement that is unfamiliar to many professionals. But just such efforts, under the umbrella of the Surface Transportation Policy Project (STPP), pushed through the most progressive aspects of ISTEA. “The STPP coalition [including the AIA, ASLA, urban planners, and the National Trust for Historic Preservation] was the first time we went beyond handcuffing ourselves in the path of bulldozers,” explains Lisa Wormser of STPP. The process mandated by ISTEA is a kind of “trickle-up effect,” she says. “The federal government says it wants state and local governments to drive the process up-
wards.” It’s already happening in St. Paul [RECORD, April 1993, page 31] and Pitts-

burgh, where the local AIA chapter sponsored a design charrette to create a uni-
fied vision of what five separate engineering projects, most prominently, the Wabash

Bridge (page 99), could contribute to the city’s defaced waterfront. The group re-
viewed bridge-design options (the agency scheme was an off-the-shelf eyesore in this city of great bridges) and suggested a more integrated design that would improve access to the waterfront and provide a more useful location for a planned light-rail station. The scheme, though more costly than the projects considered separately, has been embraced by planners, public agencies, and the local press. Understating the case, chapter president Robert Pfaffmann says such projects, “need not be a necessary evil, but could produce something greater than initially imagined.” James S. Russell

Further Information

The Surface Transportation Policy Project publishes a Resource Guide, which explains the ISTEA planning process and gives exam-

ples. STPP, 1400 16th Street, N. W., Suite 300, Washington, D. C. 20036.

“A Summary: Intermodal Surface Transpor-
tation Efficiency Act of 1991,” is a 42-page pamphlet produced by the

U. S. Department of Transportation, 400 7th Street, S. W., Washington, D. C. 20590.

“Financing the Future” provides broad background on federal infrastructure spending as well as recommendations for financing it. U. S. Department of Transportation, Office of Economics, P-37 (address same as above), 202/366-5412.

“Transportation Infrastructure: Urban Transportation Planning Can Better Address Modal Trade-Offs,” is a brochure that explores efficiencies that can be derived from planning for transportation needs based on using the mode best suited for the problem (bus, rail, cars). United States General Accounting Office, P. O. Box 6015, Gaithersburg, Md. 20877.

“Fragile Foundations: A Report on America’s Public Works,” a report to the President and Congress by the National Council on Public Works Improvement, is out of print but should be available in libraries.
Get both when you build with architectural copper. Just call 800-CDA-DATA and tap into a complete network of support services — including professional design assistance. • There’s also CDA’s comprehensive new Copper in Architecture Handbook. It features design details and specifications — in hard copy and in AutoCAD® files* — for nearly any application. • A six-part videotape series examines the functions, forms and details of different copper roofing styles. • You also get access to CDA’s databases, publications, training programs, materials specialists and local supplier/contractor listings. They’re all part of CDA’s “Copper in Architecture Program” — providing the assistance needed to put copper’s timeless beauty and dependability to work in your next project. Get all the details today. Call 800-CDA-DATA for a free copy of our brochure, Copper in Architecture.
Manufacturer Sources

For your convenience in locating building materials and other products shown in this month’s feature articles, RECORD has asked the architects to identify the products specified.

Pages 100-105
Midfield Terminal Complex, Pittsburgh International Airport
Tasso Katselos Associates, Architect

Pages 106-107
Landside Terminal, Denver
C. W. Fentress J. H. Bradburn and Associates, Architect

Pages 108-111
Pier 4/4A, Heathrow Airport
Nicholas Grimshaw & Partners Ltd., Architect

Pages 112-115
First Avenue Plant
Ellerbe Becket, Architect

Pages 126-129
Leamington Municipal Transit Hub
Ellerbe Becket, Architect

Pages 130-135
Irving Avenue Parking Garage
Syracuse University
Bohin Cywinski Jackson, Architect

Pages 136-137
Franklin Street Station
New York City
Karahan/Schwartz Architects

Pages 138-139
Seattle-Tacoma International Airport Concourse
NBBJ, Architect
“NEED A PLAIN PAPER FAX
WITH THE LOWEST COST-PER-COPY? YOU NEED
SHARP’S WINNING GAME PLAN FOR FAX.”

BILL WALSH
CHAMPIONSHIP COACH

In football, you concentrate on winning a few yards at a time. In business, it’s pennies. That’s why Sharp, the #1 fax company, has a Winning Game Plan for business.

A booklet that can help you find the plain paper fax with the lowest cost-per-copy in the industry.

Like Sharp’s FO-4800 Plain Paper Laser Fax — with a 15,000 copy toner cartridge that can last years, not months. Plus a compact, desktop size with front-loading trays and small footprint. Advanced features like collated output. 500-sheet capacity. 125 fax and 25 voice number autodialer.

And Sharp’s F.A.S.T. remote diagnostic system that signals your dealer for maintenance.

So if you’re committed to squeezing more value, more productivity out of every penny, call for Sharp’s Winning Game Plan booklet today. Or fax 1-800-3-SHARP-3.

It’ll put you right where you want to be. In the winning position.

CALL 1-800-BE-SHARP FOR YOUR WINNING GAME PLAN FOR FAX.
Calendar continued from page 4

February 10-11
tects & International Architecture 1970-90 at
the Chicago Athenaeum. Call Carolyn
Armenta Davis, 312/266-0269 or Christian K.
Laine, 312/280-0231.

June 16-19
Pacific Coast Builders Conference at San Francisco’s Moscone Center.
Contact Rick Arkus, 916/325-8000.

June 16-July 2
Chicks in Architecture Refuse to Yield (CARY), a “collective whose goals are to focus attention on the status quo of women and the position of women in the field of architecture,” presents “Exhibition of Provocative Vignettes to Address AIA Convention in Chicago.” Contact Kay Janis, 312/427-9290 or Sally Levine, 312/472-6747.

June 18-21
American Institute of Architects convention in conjunction with World Congress of Architects, Chicago. Contact Lynne Lewicki, 202/626-7467.

July 25-31
International Congress for the Conservation of Historical Cities and the Built Latin American Heritage at the University of Alcala de Henares. Write Secretariat of the V Congress, Plaza de Cervantes, 8 28801 Alcala de Henares, Spain; call 34-1 885-4014; Fax 34-1 885-4095.

August 1

September 8-12
“Frank Lloyd Wright and the Prairie School in Iowa,” Mason City, Iowa. Contact Judith Trent, 708/848-1141 or Jeanette Fields 708/366-9342.

September 29-October 2

Competition
The Concrete Reinforcing Steel Institute Design Awards XII Competition for Concrete Structures. Deadline October 1. Open to registered architects and other building professionals. Write CRSI, 933 N. Plum Grove Road, Schaumburg, Ill. 60173-4758.

Cirrus® Classic Motifs patterned and solid border panels are great for hospitality, retail and distinguished office settings. Call 1 800 233-3823 and ask for Cirrus Classic Motifs.

27 million Americans can’t read. And guess who pays the price.

Every year, functional illiteracy costs American business billions.
But your company can fight back ... by joining your local community’s fight against illiteracy. Call the Coalition for Literacy at toll-free 1-800-228-8813 and find out how.
You may find it’s the greatest cost-saving measure your company has ever taken.

A literate America is a good investment.
Birdair’s Tensioned Membrane Lands at Jacksonville International Airport

Birdair’s Teflon® coated fiberglass membrane technology makes permanent translucent structures of any size or configuration possible. In Jacksonville, architects used tensioned membrane to create a “wagon wheel” curbside canopy, which is 26 ft. wide and 824 ft. long. The crossover canopy is 26 ft. wide and extends 174 ft. from curbside to the parking garage. Birdair continues to pioneer technology it introduced in 1956, now providing imaginative and thorough detail, fabrication and erection services to design and building teams world wide. From California to New York, to Canada, Italy and Saudi Arabia, Birdair has created sports domes, skylights and magnificent canopies. For complete illustrative and technical information on how you can bring high flying excitement to your next project, call or write:

Birdair, Inc. • 65 Lawrence Bell Drive • Amherst, New York 14221 USA
716-633-9500 • 800-622-2246 • FAX: 716-633-9850

Circle 52 on inquiry card
New Products

305. Warm and dry
A new gray-colored matrix desiccant, Insul-Dri, adsorbs moisture from insulating glass, resists long-term exposure to UV, moisture, and thermal shock, and blends well with steel spacer constructions. It was developed for glass-house use with PPG’s Intercept insulating-glass edge system. H. B. Fuller Company, St. Paul, Minn.

306. Acrylic block
A Plexiglas product 87 percent lighter than glass units, block comes in a variety of colors and surface patterns, as well as corners and end-cap shapes. Described as equally suitable for interior and exterior construction, the block is guaranteed not to discolor or fade for up to 19 years. Guardian Plastics, Inc. Jeanette, Pa.

Continued on page 153

DEPENDABLE QUALITY
AND DESIGN SINCE 1923.

1910 ACORN/BOSTON
A very efficient and classic street and area light in a down light assembly on a 5-inch diameter, 18-foot deeply fluted post with an impressive 17½ x 35-inch base, all finished in our distinctive Verde Green.

MAIN STREET/OXFORD
A great old street fixture in non-rusting aluminum with a textured acrylic lens. The decorated post base scales 18 x 27-inches, the fluted pole is a 6-inch to 3-inch taper and the unit is finished in traditional black.

A wide range of fixtures, ornamental posts, bollards, wall or post brackets and fitters are shown in our 1993, 64-page, full color catalog. We would be happy to send you a copy. Write or FAX your request to:

STERNBERG
VINTAGE LIGHTING FIXTURES
& ORNAMENTAL POLES SINCE 1923
5801 N TRIPP * CHICAGO IL 60646
312-478-4777 FAX 312-267-2055

Circle 53 on inquiry card
$35 BILLION WILL BE SPENT OVER THE NEXT THREE YEARS ON K THROUGH 12 SCHOOL CONSTRUCTION*

* E. W. Dodge.

The number of school-age children is booming. From top to bottom, the existing educational plant in most urban areas is in shambles. **And 30 percent more space is needed per pupil.** There’s an explosion in special programs that targets the needs of students with learning disabilities or outstanding talents. Computers are now **basic** tools of education... and they require lots of extra footage. And most classes will be made up of 20 pupils — instead of 30 or more, requiring additional classrooms... **And That Means More Schools Have To Be Built!**

New “School Ways” Provides:
- An important analysis of building forecasts for new schools.
- An in-depth examination of changing approaches to education that will shape school design.
- A concise history of school design.
- A key chapter on emerging trends by Perkins & Will architect William Brubaker.
- As well as detailed profiles on 50 important completed educational construction projects, model photographs and plans of schools currently on the boards, a discussion of educational technology, and **much more.**

Who Should Read “School Ways’”?
Architects, architecture students, school administrators, school board members, and others concerned about education.

To order your copy(ies) of **SCHOOL WAYS**, send your order to:

Fax this order form to: 1 (717) 794-5291, or
Mail this order form to:

SCHOOL WAYS
c/o McGraw-Hill, Inc.
Blue Ridge Summit, PA 17214-9988

“SCHOOL WAYS” ORDER FORM

YES! Please send ______ copy(ies) of “School Ways” by Ben E. Graves and bill me at the price of $39.50 per book, plus postage and handling.

NAME ____________________________

COMPANY ____________________________

ADDRESS ____________________________

CITY ____________________________ STATE ______ ZIP ______

ISBN 002468-5
307. Flexible fabric flashing
Fiberweb 200 is a fiberglass-reinforced polyester flashing backed with waterproof vinyl acetate, materials that resist the caustics and alkalis found in concrete and mortar. Offered in a range of widths, flashing is suggested for use in insulated veneer-wall systems which tend to cause accelerated corrosion of masonry ties and metal studs. Flashing is said not to shrink, sag, or delaminate for at least 100 years. Dur-O-Wal, Inc., Arlington Heights, Ill.

309. Architectural faucet
The Neuville fitting has a tapered escutcheon and semi-cylindrical lever handles described as “ritzy art deco.” Offered in chrome, brass, and nickel finish options, the fitting comes in designs for lavatories, baths, showers, and bidets. Kohler Co., Kohler, Wis. Continued on page 155
Dowcraft Movable Walls keep facilities budgets in the right place. Your bank.

Some floor to ceiling wall systems are not engineered for easy relocation. In fact building owners can suffer as much as 40% loss of gypsum type demountable panels during the first reconfiguration of their facilities. Dowcraft movable walls are "unitized" steel walls that live up to their intended purpose. They save you money because relocation doesn't require outside contractors, and panel damage rarely exceeds 10%, move after move. By specifying a Dowcraft system you can hold the line on budget by matching the type of wall to any functional and aesthetic requirement, whether it's a group of executive offices, a general office layout, or plant work spaces. There are five application engineered systems in all, including a fire rated wall and a system which integrates with Haworth partition and wall furniture…plus effective alternatives to "Ready Wall" and "Design Option" walls. When you're ready to move to a floor to ceiling system that's truly easy and economical to move, Dowcraft distributors and engineers will help you make the choice that makes sense for you. For complete catalog and design information, just call, write or FAX.
310. Large-scale beam seating
The Meeting Collection, designed and made in Italy by Matteograssi SpA (who have been building leather saddles since 1880), uses double layers of European coach hide set on an aluminum-alloy support beam as seating suitable for Executive Class lounges in airports or other large waiting areas. Seats and backs, made of hides 2.5mm thick, come in 25 colors; optional inset tables are marble. Brianza Furniture International, Ltd., High Point, N. C.

311. Waiting-room furniture
Versa Conference Tandem seating, based on a double-tubular steel beam that supports both seat and table modules, matches freestanding stack chairs. Legs and beams can come in any of 30 powder-coat colors; corner tables provide an attachment for a 90-degree beam application. KI, Green Bay, Wis.

312. Traditional-style wood benches
Made of Indonesian shorea, a decay-resistant resinous hardwood that weathers gray, public-area chairs, benches, planters, and tables are recommended for outdoor use. Though the pieces may be left natural, they are also available in a range of custom-color finishes including lacquer, stains, polyurethane paints, whitewash, and aniline dye. Continental Creative Sales, Inc., Garfield, N. J.
Continued on page 157

Sweet's Accessible Building Products File
Finding the products that meet the requirements for the Americans With Disabilities Act is as easy as reaching for Sweet's Accessible Building Products File and this valuable information source is yours absolutely FREE!
Sweet's newest resource of essential building product information offers you...
- Over 500 pages of four-color photos, detailed illustrations, text and specifications for a comprehensive array of handicapped/accessible building products.
- Triple-indexing — by product, manufacturer and trade name — so you can find the products you need quickly. Plus you know that all products featured in this File meet ADA requirements.
- BuyLine, our toll-free automated service, providing you with the name and phone number of the manufacturer's representative or distributor in your area.
To qualify to receive your copy today, please call us at 1-800-442-2258. Be sure to act quickly before our supply runs out!
ARCHITECTURAL RECORD REPRINTS

Get your message across with reprints of articles from ARCHITECTURAL RECORD.

Promote your firm. Reprints of RECORD articles featuring your work are an ideal way to remind clients and prospects of your firm's accomplishments and high standards of design.

You can order reprints of articles that have appeared in RECORD within the past two years, in any quantity (minimum: 500).

For more information, price quotes, and help with layout on building project reprints, write or call:

Janice Austin
ARCHITECTURAL RECORD
Princeton Road
Hightstown, NJ 08520
(609) 426-5494
313. Wood-face fire door
An extension of the Chateau residential/light-commercial door line, a new 20-minute fire door maintains the series' raised-eyebrow top panels and carved lock rails, carrying the design theme throughout a facility. Laminated panels of Douglas fir or Western hemlock sandwich a fire-resistant core; door can be specified in heights of 6 ft 8 in. to 8 ft, and in several widths. Simpson Door Co., McCleary, Wash.

314. Faucets for healthcare
Designed by architects Stanley Tigerman and Margaret McCurry, wrist-blade handles and gooseneck spout are said to offer ease of use and excellent water control. American Standard Plumbing Products, Piscataway, N.J.

315. Curved tempered glass
A new bending line can handle tempered glass over 3/8-in.-thick, in virtually any shape or size, and combine tempered with laminated glass. The Toyota AirFlite Center (Jeffrey M. Kalban, architect) uses 1/2-in. glass across a 50-ft radius. Dhubak Corp., Freeport, Pa.

The ANSWER Is –

Danpalon®
Translucent Insulating Daylighting System

The QUESTION Is –
Which translucent daylighting system is the only one with a cutting-edge technology that is revolutionizing the industry?

That's a question you need to ask before you specify any skylighting/daylighting project.

There's only one right answer – Danpalon from CPI International!

There are many good reasons why Danpalon is the most versatile, most cost-effective translucent insulating daylighting system.

But if you don't ask the right people the right questions, you'll never get the right answers. You COULD be putting your project in JEOPARDY!

Phone or fax CPI today.
Get factual, fully documented answers to all your daylighting system questions... Ask for a personal Video Viewing... for a hands-on demonstration in your office... for immediate assistance with a project call 1-800-759-6985 (outside of Illinois).

CPI International, Inc.
1371 Wilhelm Road
Mundelein, Illinois 60060 USA
TEL: 708/816-1060
FAX: 708/816-0425

Excellence in Translucent Daylighting

Use our Sweet's BuyLine 4424 See us in Sweet's 07820(CPI)

Circle 57 on inquiry card
Preservation Plan on It

Planning on restoring a house, saving a landmark, reviving your neighborhood? Gain a wealth of experience and help preserve our historic and architectural heritage. Join the National Trust for Historic Preservation.

Make preservation a blueprint for the future.

Write:

National Trust for Historic Preservation
Department PA
1785 Massachusetts Ave., N.W.
Washington, D.C. 20036
412. Coated glass

413. Electronic shading
A data sheet describes a commercial door offered with a liquid-crystal vision-light option. The glazed in-serts go from private/opaque to view/clear at the touch of a remote switch. LC glass can also be ordered in colors, and in larger-light sizes. Ahadi/Hollander Corp., Bayside, N. Y.

414. Laminated glass
A 28-page catalog covers all aspects of laminated-glass specification, from the dynamic racking performance of curtain-wall systems in an earthquake to its safety value used in zoos (or prisons). CAD-based structural-design programs are available free of charge. Monsanto Co., St. Louis.

415. Plexiglas in architecture
A color catalog presents general design principles on Plexiglas acrylic plastic for building applications, and specific design and specification recommendations on Plexiglas sheet for window glazing. Specialty products include a range of Flair patterns, which resemble cast glass, and ultraviolet-filtering sheet. AtoHaas North America, Inc., Philadelphia.

416. Solar-control glazing

417. Printed-pattern glass

For more information, circle item numbers on Reader Service Card.
Classified Advertising

POSITIONS VACANT

Senior Architect for Forensic Practice
We need a full time architect for our Lancaster, Pennsylvania office and part time in other Mid Atlantic areas. We provide technical support for litigation related to professional liability, construction disputes and accidents, facility failures, and personal injuries related to building design. Must be able to communicate effectively orally and in writing. Must be a registered professional architect (registered, NCARB and degree) with experience in the design, construction and maintenance phases of a wide range of buildings and facilities. If interested, please send resume: Smith & Robson, Forensic Engineers, Architects and Scientists, 354 North Prince Street, Lancaster, PA 17603

Architect- Retail Design, Responsible for block planning, design & detailing of roll-out & specialty retail projects in U.S. & S.E. Asia applying knowledge of retail merchandising strategy, back-of-house function requirement and zoning/building codes for U.S. & S.E. Asian countries. Determine interior functional/spatial requirements using knowledge of retail strategies and partitioning for walls, traffic patterns & specialized feature with little/no supervision; prepare plans/scale drawings & conduct on-site observation of construction to monitor compliance with software & equipment to prepare project designs/plans. May oversee work of unlicensed architects. Must Have: Bachelor's Degree in Architecture from Nat'l Accreditation Council for Architectural Education Accreditation Board approved school (5 yr program), incl. minimum 20 credit hours in design & design theory; 5 years architectural experience focusing on roll-out retail, block planning & detailing; Washington State Architectural License (or proof of immediate eligibility); 1 year experience or advanced coursework w/CAD; 6 months experience or relevant coursework on U.S. Asian retail architecture. Salary: $25,120/yr; 40 hrs/week in Seattle, WA. Send resume by 7 July, 1993 to: Employment Security Dept., E & T Div., Job #364194, P.O. Box 9046, Olympia, WA 98507-9046.

Project Coordinator, 40hrs/wk, 9am - 5pm, $28,800/yr. Analysis of architectural and schematic and detailed design data. Establish/manage computer systems for the CAD production of architectural details and construction documents. Construction administration of building repair projects including on-site survey, inspection and parking garage repair. Interior design. Master of Architecture as well as six months experience as a Project Coordinator or Designer required. Responsibilities include: six months experience in CAD production of architectural details; interior design; budget calculations using spreadsheet software; parking garage repair; site visits; construction inspection. Must have experience in computer-aided drafting. Must have earned a degree in architectural engineering from an accredited 4-year program. Knowledge of AutoCAD and Microstation is essential. Opportunities for advancement exist. Send resume to: John Woodson, Design Group, 401 South State Street, Chicago, IL 60605, Attention: Jean Woodson, Reference #V-IL-10078-W. No calls. An Employer Paid Ad.

Architect strong design and production skills, capable of multiple project management, marketing skills desirable. Partnership potential in small pleasant upstate New York office. $35,000-

We invite high calibre and responsible individuals to fill the following positions:

Associate Director (Design)/Chief Design Architect

AIA, HKIA or equivalent, minimum 10 yrs working experience in large international practices. The ideal candidate should have proven track record in conceptual & detail design of major highrise commercial, hotel and office buildings. Opportunity for further promotion for outstanding candidates. This is a unique opportunity to join one of the major architectural practices in Hong Kong with regional offices in Bangkok, Singapore, Shenzhen, Guangzhou and Shanghai. Accommodations will be provided.

Please send full resume by courier giving details of qualification, experience, present and expected salary, office and home telephone number together with a recent photo to B6 Provost Centre, Wharf Road, North Point, Hong Kong before June 25, 1993.

Architect: designs interior & exterior spaces of residential development projects. Provides architectural services related to design and construction of the structures. Plans layouts of project and integrates engineering, surveying and architectural elements into a unified design. Prepares preliminary sketches, technical drawings and color renderings. Part of the project design team planning real estate development in United States, take the lead in such planning for China. Available to travel to Far East. Knowledge of architectural, construction requirements and real estate market in China through work experience. Ability to perform stated duties by portfolio. Masters degree in Architecture or equivalent from NAAB accredited university or one year work experience. $27,000 per year. 40 hours work week. Equal opportunity employer. Application by resume. Send resume with social security numbers to the Indiana Department of Workforce Development, 10 N. Senate Avenue, Indianapolis, Indiana 46204, Attention: Gene R. Reploge. Refer to Job Order # 3288536.

Architectural Facility Programmers--SH&G seeks degree and certified architects for positions within its expanding Programing & Planning Group. The successful candidates will participate in programing interviews/workshops, data base development and analysis, execution of project programs, report writing, and business development. Candidates must have a minimum of 5-7 years' architectural and facility programming experience including at least three years for large health care projects. Large office and research lab experience also desired. Excellent presentation, leadership, people, and analytical skills, in addition to report writing, PC experience and word processing experience required. If you are a self starter and desire to be challenged, please send your resume, in confidence to: Human Resources (PO#3), Smith, Hinchman, & Grylls, Assoc., Inc., 150 W. Jefferson, Suite 100, Detroit, MI 48226. Equal Opportunity employer M/F/D/V.

INTERNSHIPS

BUSINESS OPPORTUNITIES

Wanted: Architectural Practice. Seeking ownership transition/purchase or association. Upper midwest location. Reply to B0-7153, AR.

SPECIAL SERVICES

Full-color post cards are an effective way to promote your services. Mitchell Graphics specialize in printing affordable full-color post card and direct mail products. All our quality reproductions are 100% guaranteed to meet your satisfaction. To receive your free sample package and product catalog, please call toll-free 1-800-841-6793. Mitchell Graphics, 2230 E. Mitchell, Petoskey, MI 49770-8604.

BOOKS FOR SALE

Old are rare books. Architecture and Decorative Arts. Send for free illustrated catalog to: James Beattie, 105 North Wayne Ave., Dept. R, Wayne, PA 19087 or call 1-800-441-6705.

TO REPLY TO BOX NUMBERED ADS:
Address separate envelopes (smaller than 11” x 5”) for each reply to:
Key number from ad
Architectural Record
Post Office Box 900
NY NY 10108
SOLITE® Masonry Units The Total Solution

Unusual visual effects emerge when our grilles are designed for area effects. Versatility by the theme. R&G offer architects & interior designers a wide range way to express the changing forms of metal with the integrity of R&G's architectural grilles. Custom or standard finishes are available plus any grille can be made in matching color to blend with your decor. 202 Norman Ave. Bly, NY 11222, 800-521-4895. FAX 718-349-2611.

Register & Grille Mfg., Co.

PLASTRGLAS Glass Fiber Reinforced Gypsum

Innovative designs are made simply, economically & easy to install with PLASTRGLAS Glass Fiber Reinforced Gypsum, a complete line of columns, domes, coffers, ceilings, capitals, & light shelves are offered & engineered to meet the most exacting architectural specifications. Products are shipped in special crating to avoid handling problems. Architectural fabrications are available for exterior as well as interior use. (402) 455-0652.

PLASTRGLAS, Inc.

Revere Copper Shingles

Revere Copper Shingles are quicker and easier to install than ordinary asphalt shingles. There are no special skills required and no special tools. Because Revere shingles are manufactured from solid copper, not a foil laminate, they will likely last as long as the building that protects. To learn more about our copper sheets, or any of our other copper roofing products, call us toll-free at (800) 488-1776.

Grounding System

The XIT electrolytic grounding system provides the most stable, low resistance earth grounding regardless of soil type, chemical or moisture content. The XIT system includes the rod filled with nonhazardous metallic salts, exothermic connection, backfill material and protective cover. It requires less real estate and has a life expectancy three times that of driven rods. XIT grounding systems find use in communications systems, electrical substations, computer rooms, and more.

FiberBond® Sheathing

FiberBond Sheathing is designed for use on outside or inside wall framing. It provides a water-resistant backing for various exterior siding materials. They are exceptionally strong and fire-resistant with superior fastener-holding ability. Sheathing can be used in E.I.F.S. construction and meets or exceeds ASTM C79 requirements. Underlayment and wallboard also available.

Louisiana-Pacific

High Performance Curtain Wall System

Create comfortable, energy-efficient indoor environments with the VISIONWALL® high performance window & curtain wall system. Features R-8 glazing, extruded aluminum frame with 3-inch deep thermal break, 5-pound resistance to condensation, & excellent acoustical attenuation characteristics. Custom-designed precision manufactured for commercial, institutional & industrial applications.

Visionwall Technologies, Inc.

Gorgas Park Community Center, Mobile, AL, chose United Panel's STENNI aggregate & STENEX smooth face panels for its exterior & interior applications because of their superior beauty, quality, durability, & cost effectiveness. They are available in a variety of surfaces & colors & their flexibility makes them easy to install & maintain. Call 1-800-933-8700 or write: United Panel, Inc., P.O. Box 188, Mt. Bethel, PA, 18343.
Ceco Building Systems design & fabricates attractive, energy efficient, "function oriented" pre-engineered metal buildings. Ceco is well known for its "non-standard is standard" design philosophy, allowing each project to be designed and manufactured to meet specific space and function requirements. Ceco is equally well known for its two standing seam roof systems.

Ceco Building Systems
Circle 69 on the inquiry card

Spartan Showcase, Inc. is a manufacturer of quality crafted glass & wood displays; for stores, museums, schools, office lobbies & homes. The flexibility in our manufacturing allows us to produce standard (shown in catalog) & custom shape & size fixtures for an array of designs with security. For more information or a catalog, call 1-800-325-0775 or fax 314-583-4067.

Spartan Showcase, Inc.
Circle 70 on the inquiry card

Fritztile introduces "A New Generation of Classics" with its Classic 200 & 600 Series flexible terrazzo floor tile. Accented with imported and domestic marble this dynamic flooring is available in a range of colors from pastels to earthen tones. Exceptionally wear and stain resistant, Fritztile is perfect for commercial, institutional and residential applications - anywhere beauty and durability are important.

Fritztile
Circle 71 on the inquiry card

Domtar Gypsum
Circle 72 on the inquiry card

Raymond Enkeboll Designs
Circle 73 on the inquiry card

Ancor produces close to three dozen No. American and imported granites in a full range of colors and finishes for residential, commercial and institutional use. Standard format is 12 x 12 x 3/8"; other sizes up to 18 x 18 x 1/2" available. Ancor's honed finish tile is particularly suitable for high traffic commercial areas. 435 Port Royal West, Montreal, Quebec, H3L 2C3, Canada. Ph#: (514) 385-9366, Fax#: (514) 382-3533.

Ancor Granite Tile
Circle 74 on the inquiry card

ANCOR GRANITE TILE

Brochure Features Concrete Construction

Produced by the Concrete Reinforcing Steel Institute, this 16-page, 4-color brochure pictorially highlights the advantages & benefits of cast-in-place reinforced concrete. Thirty-seven structures are featured in nine categories, including: Parking Structures, Housing, Commercial Buildings, Educational Buildings & Recreational Facilities. All show the strength and versatility of concrete.

CIRI
Circle 76 on the inquiry card
Duraflake FR Fire-Rated Particleboard

Duraflake FR is a smooth, grain-free, class I fire-rated particleboard panel designed to meet fire code regulations. It is an excellent substrate for fine wood veneers, high and low pressure laminates and vinyls in all wall systems, furniture and fixture applications where fire codes and public safety are critical. Contact Willamette Industries, Inc., P.O. Box 428, Albany, OR 97321 or call (503) 929-3341.

Duraflake
Circle 77 on the inquiry card.

Creative Designs with Performance

PYROK Acoustement Wall and Ceiling Finishes are specified wherever decorative plaster finishes, durability, and sound absorption are desired! Available in acoustical plaster and Portland cement, all PyroK Acoustement formulations are spray-applied in a variety of textures, in standard and custom colors, complete with a ten year warranty.

PYROK, Inc.
Circle 76 on the inquiry card.

KROY ADA SIGNAGE

For more than a decade, Kroy Sign Systems has been working with architects & designers to specify professional, cost-effective signage. Let us worry about ADA signage compliance for your next project while you concentrate on the rest. Whether you’re bringing a facility up to code, renovating, or designing for new construction, it’s imperative to know how to comply - before you begin. Call 800-733-5769 or Fax 602-951-7033.

Kroy, Inc.
Circle 79 on the inquiry card.

New Building Image

Quickly transform the architectural design & increase the value of old high & low-rise buildings with a Senergy engineered retrofit system, while ensuring minimal disturbance to occupants. The ERS provides simple guidelines for cost-effectively covering a variety of exterior wall substrates with a Senergy exterior insulation & finish system(EIFS). The new highly insulated ERS facade provides the appearance of stucco, granite, marble or other natural stone finishes in a wide choice of colors & textures. Made with 100% Acrylic Polymers. For more info: Call 401-467-2600.

Senergy
Circle 80 on the inquiry card.

Porcelain on Aluminum Architectural Panels

Ideal for retrofit projects, including window walls and glazing and veneer applications, these porcelain-on-aluminum panels upgrade the appearance, security, and energy efficiency of older buildings. The insulated panels are field installed without special tools. Phone: 800-228-2391 or Fax: 402-466-2790

Mapes Industries, Inc.
Circle 81 on the inquiry card.

Moldcast/USI Lighting VONDA Bollard

The VONDA Bollard uses a unique Moldcast high performance optical system giving the specifier versatility, and a variety of finishes & accent combination to complement the most stringent architectural requirement. The VONDA is offered in two basic models with a choice of two upright and two ground distributions for a variety of special effects.

Moldcast Lighting
Circle 82 on the inquiry card.

Snow Melting System

With a complete system from Snow Technologies you can automatically eliminate snow and ice from walkways, mass transit depots, airports, heliports, loading docks, and more. Plowing, shoveling and salting are now obsolete, creating a safe and convenient environment 24 hours a day, seven days a week. For detailed information please call: 800-683-MELT. 12887 Farmington Road, Livonia, MI 48150

Snow Technologies, Inc.
Circle 83 on the inquiry card.

Prefabricated Shelter System

Brochure describes some of the many different shelter designs available from the originator & leading mfg. of prefabricated Bus & Transf Shelter. The Columbia Prefabricated Shelter System can also be used to fabricate Smoking Shelters which may be needed to meet new Federal Regulations. Columbia offers Train Station & Golf Course Shelters, Sales & Display Kiosks & Benches. Variety of color finishes, glazing materials & roof designs are available. Custom designs can be fabricated in various architectural styles to meet individual project requirements.

Columbia Equipment Co.
Circle 84 on the inquiry card.
Is your library missing any of these special Architectural Record titles?

RECORD HOUSES COLLECTION
More than 260 pages from Architectural Record, with plans and text in full color. $19.95

RECORD HOUSES COLLECTION
More than 290 pages from Architectural Record, with plans and text in full color. $19.95

IN THE CAUSE OF ARCHITECTURE
- Frank Lloyd Wright's historic essays for Architectural Record (1908-1952), with a symposium on Wright and architecture edited by Frederick Gutheim. 246-page high-quality paperback. $12.95

40 YEARS OF AMERICAN ARCHITECTURE
(1937-1977) - A nostalgic history of Architectural Record's building types studies from the advent of the drive-in to the recycled building. A 110-page softcover reference with more than 300 photographs, drawings, plans and schematics. $9.95

ARCHITECTURAL RECORD'S FIRST ISSUE (1891)
A collector's item, reprinted for our centennial celebration, with 150 pages and 64 illustrations. Limited numbered edition. $16.95

ARCHITECTURAL RECORD REVIEW SERIES
A set of seven Architectural Record Reviews (1991-1992), focusing on education and health care facilities, office buildings and retail sites. Each includes follow-ups of projects two to six years after their appearance in Architectural Record, with commentary by owners, architects, tenants and reporters on which design strategies worked and which didn't. $19.95

ARCHITECTURAL RECORD FILE CASES
Sturdy and durable file cases to protect and preserve your valuable copies. Garnet red finish, with embossed gold lettering. Each case holds 8 to 10 issues. $6.95 each, or 4 for $25.00

BACK ISSUES of ARCHITECTURAL RECORD
Complete your library or fill in your collection by ordering missing issues. Most back issues from 1985 to date are available, except the following: 1985 - January, mid-April, July, September; 1986 - May, mid-September; 1987 - October; 1988 - March, April, mid-April, September; 1990 - April, September; 1991 - April, September. Cost per issue is $12.00

TO ORDER: All prices include shipping and handling. Circle items requested and list dates of back issues. Send with payment by check or money order to:

ARCHITECTURAL RECORD
Attn: Cheryl Levy, Circulation
1221 Avenue of Americas
New York NY 10020.
Telephone inquiries: 212-512-3443
HANDY-SHIELD™
by PLUMBEREX PRODUCTS

HANDY-SHIELD
safety covers conform to the Americans Disability Act (ADA) whenever insulation of drain & supply lines are required to protect individuals in wheelchairs from burns or injury, under wash basins. HANDY-SHIELD features a unique conforming style with interior foam lining & exterior vinyl texture in an array of colors, resulting in an appealing finished product. Please call (619) 322-1772 for more information.

New Pro-Tek® WG-415
Sculptured Wall Guard

Wide 4" (101 mm) high sculptured profile with high gloss finish, gives a rugged, strong appearance in new designer selection of 20 standard & 20 special colors, with matching end caps.

Call 1-800-431-3456

FREE X-Ray Room Planning Guide

Made of lead-impregnated, transparent plastic, CLEAR-Pb® X-Ray Room Shielding provides complete radiation protection with panoramic viewing. Features include prefabrication for quick, on-site assembly, attractive, space-saving decorative looks and shatter resistance with a choice of lead equivalencies. Free CLEAR-Pb® X-Ray Room Planning Guide is available.

NUCLEAR ASSOCIATES
A Division of VICTOREEN, INC.
100 VOICE ROAD
CARLE PLACE, NY 11514-1593 U.S.A.
(516) 741-6260
FAX (516) 741-5414

Animation
WE USE YOUR DATABASE

We produce state of the art computer animation using your database.

Howard Associates, Animation OutSource
980 Monroe St., Savannah, GA 31405 Call (404) 882-7333 Fax (404) 882-8760

Glasstemp
Tempered Glass Doors For More Dramatic Entrances
Line of all-glass doors introduces a new standard of strength & elegance in glass entrances. Precision fabricated to be installer friendly with the most dependable & functional components available. Offered in a wide choice of standard & custom rails, patches & hardware, as well as with transoms & sidelites, doors are available in a variety of finishes to help you enter a new world of dramatic expression. Free catalog. Glasstemp Inc., 1001 Foster Ave., Bensenville, IL 60106, 708/595-3750, Fax 708/595-3782.

Johnsonite

Johnsonite's 20-page architectural guide illustrates the components of our Coloright Flooring System, color-matched rubber and vinyl wall base, stair treads, tile and accessories that coordinate with leading carpet, ceramic tile, marble, fabric, wallcovering and laminate surfaces. Consisting of 18 leading colors that match across the entire and 21 additional colors available in specific products.

Johnsonite®
A Division of Duramax, Inc.
Call or fax Johnsonite for a catalog.
US: (800) 699-8816 Fax (216) 543-8920
In Canada: (800) 661-2162

Site Complements Catalog

The TimberForm Site Complements catalog presents matching benches, ash receptacles, litter containers, planters, bollards and bike racks in traditional through contemporary designs. Over 350 cast iron, steel and wood products are offered in more than 170 colors.

Call toll-free 1-800-547-1940, Ext. 507
Columbia Cascade

WORTHINGTON
COLUMNS • BALUSTRADING
MUCH MORE

44-Page Catalog
1-800-872-1608
FAX 404-872-8501
Advertising index

Bold face—page number
Italics—Reader Service number

A
Abet Laminati, 144; 47
(800) 228-2238
Apple Computer, 82-83
(800) 441-3001
Armstrong World Industries, Inc., Cov.II-1; 1, 149; 51 [G-E]
(800) 233-3223
Azrock Industries, Inc., 94; 44 [G-D]

B
Benjamin Moore Paints, 141; 45 [G-E-D]
Bice Co., 68; 29 [G-E-L]
(203) 934-6363
Birdair, Inc., 156; 52
(800) 822-2246
Bobrick Washroom Equipment, Inc., 93; 40 [G]
(800) 553-1600
Boston Retail Products, Cov.III; 110 [G-D]
(800) 225-1533

C
Celotex Corp., 60; 22 [G-E-I-L-D]
(813) 873-4498
Clear Plastics International, Inc., 157; 57 [G]
(800) 769-6985
Consultant’s Directory, 158
Cookson Co., 52; 18 [G]
(800) 858-0653
Copper Development Association, Inc., 146; 49 [G]
(800) CDA-DATA
Copper Sales, Inc., 55; 19 [G]
(900) 426-7737
Core Microsystems, 81; 31
(800) 886-2732
Cornell Iron Works, 147; 50 [G-E-I]
(800) 239-0366
C/S Group, 45; 14 [G-E]
(800) 239-0349

D
Dal-Tile Corp., 90; 37 [G]
(800) 923-TILE
Dovercraft Corp., 154; 55 [G]
(716) 665-0220
DuPont Co.-Textile Fibers, 48-49; 16 [D]
(800) 4-DUPONT

E
Eco-Pop, 88; 25 [G]
(800) 221-4169
EIMA, EIFS Industry Members Ass’n., 11 to 44; 13

F
Formica Corp., 39, 89; 11, 36 [G-L-D]

G
Georgia-Pacific Corp., 43 to 65; 25
(G-L-L)
(800) 447-2822
Glen Raven Mills, Inc., 56-57; 20 [G]
(919) 227-6211
Graphisoft, 70; 30
(415) 737-8965
Graphisoft, 86; 34
(410) 289-5114

H
Haws Company, 145; 48 [G-E]
(510) 525-5801
Herman Miller, Inc., 2-3; 2
Hong Kong Trade Development Council, 161
Hurd Millwork Co., 69; 29 [G-L]
(800) 28-E-HURD

I
Intergraph, 85; 33
(800) 345-4856

K
Kawneer Co., Inc., 95; 42 [G]

L
Louisiana-Pacific, 4; 4 [G-L-L]
(800) 223-5647

M
Marvin Windows, 46-47; 15 [G]
(800) 346-5106
MCBI, 140; 44 [G]
(713) 445-8555
McNichols Co., 159; 59 [E-I]
(800) 237-3820
Monsanto Chemical Co.-Saflex Sound Control, 61; 23 [G-E-I]

N
Nishiya Corp. of America, Belbien, 16; 10 [G-D]
(616) 466-7570
Nucor Corp., 14-15; 9 [G-E]

O
Oce-Brusing, Inc., 40; 12
(800) 445-3526
O’Keefe’s, Inc., 17 to 20; 95 to 100 [G]
(201) 230-7732
One-Write Plus, 87
(800) 388-8000

P
Poulten Lighting, Inc., 13; 8
(800) 342-2310
Product/Literature Showcase, 163 to 165

R
Raceway Components, Inc., 92; 39
(201) 279-1116

S
Sarnafil, Inc., 8; 5 [G-I]
(800) 451-2504
Sharp, 148
(800) BE-SHARP
Softdesk, Inc., 84; 32
(603) 428-3199
Stark Ceramics, Inc., 62; 24 [G-E-I]
(800) 321-0662
Steel Joist Institute, 66; 26
Sternberg, 151; 53 [G-E]
(312) 478-4777
Sto-Industries, Inc., 50-51; 17 [G]
(800) 221-2397
Sweet’s Group, McGraw-Hill, Inc., 155, 162; 56, 60

T
Tamko Asphalt Products, 96; 43 [G-I]
(800) 641-4691
Technical Glass Products, 53-54; 76
(800) 426-0279
The Marketplace, 167
3M Data Storage, 153; 54
(800) 889-1899
Trocal Roofing Systems, 143; 46 [G-I]
(800) 457-6634

U
USG Interiors, Inc., Cov.IV; 111
[G-E-L-D]
(800) 960-8399

V
Versico, Inc., 58-59; 21
(800) 992-7663
Vinyl Plastics, Inc., 159; 58 [G]
(800) 874-2420

W
Weyerhaeuser Architectural Door Div., 67; 27
(800) 869-DOOR

Z
Zero International, Inc., 12; 7 [G]
(800) 635-5385

(OSRAM SYLVANIA, 10-11; 6
(800) 338-2542

Sales offices

Main Office
McGraw-Hill, Inc.
1221 Avenue of the Americas
New York, New York 10020
Publisher
Bruce C. Smith III (212) 512-2844
Administrative Assistant
Anne Mullen (212) 512-4666
Director of Business and Production
Joseph R. Wenz (212) 512-2793
Fax: (212) 512-4256
Assistant Promotion Manager
Sherily Berger (212) 512-3234
Classified Advertising
(801) 972-4400
Editorial
(212) 512-3234

District Offices

Atlanta
4170 Ashford-Dunwoody Road
Atlanta, Georgia 30319
Office Benenney (404) 843-4781
Fax: (404) 825-4066

Chicago/Dallas/Houston
2 Prudential Plaza
180 N. Stetson Ave.
Chicago, Illinois 60601
Thomas P. Karovers, Jr.
(312) 616-3338
Fax: (312) 616-3332

Philadelphia
1700 Market Street
Suite 1820
Philadelphia, PA 19103
Tom Espostio (215) 496-3384
Fax: (215) 496-3382

Los Angeles
Media Sales Associates
1493 Temple Hills Drive
Laguna Beach, Calif. 92651
William Hugue (714) 494-3419
Sheryleng Young
Fax: (714) 497-7261

New England/New York
1221 Avenue of the Americas
New York, New York 10020
Louis Butcher (212) 512-2514
Fax: (212) 512-4256

New York
1221 Avenue of the Americas
New York, New York 10020
Laurence Viera (212) 512-3093
Fax: (212) 512-4256

San Francisco/Seattle
Media Sales Associates
9017 Peacock Hill
Gig Harbor, WA 98332
William Hugue (206) 855-7575
Fax: (206) 855-7576

Canada
Frank B. Spangenberg
(416) 898-3911
Donald R. Wall
(416) 867-4314

The Marketplace/ Product Literature Showcase
Bve DeCarlo
Kevin Beatty
John Raddick
1-800-544-7829
Fax: (212) 512-2074

168 Architectural Record June 1993
When you're looking for wall protection, how often do you run up against something this nice?

The Boston Bumper. Clean, simple lines that work subtly and unobtrusively to protect interiors from wear and tear.

The Boston Bumper. Flexible vinyl that, unlike rigid protection systems, absorbs the shock of impact more quietly. And then returns for more.

The Boston Bumper. Custom colors as well as standard, so you'll never have to compromise the look you want to achieve.

The Boston Bumper. The nicest way to walk the fine line between protection and decor.

The Boston Bumper.™
The finest line between protection and decor.
Fineline Suspension Systems offer more colors, reveal widths and appealing choices! Whether you select regular Fineline for a clean, tailored appearance; the unique Fineline "Inside Color" Suspension with bold primary colors in the reveal, or the Fineline 1/8 Suspension with its slender reveal and dramatic look, you're choosing the high quality systems that meet your needs! The systems that come in two reveal widths so they're more appealing and in 24 colors that are always revealing! Fineline™ Suspensions, from USG Interiors, Inc. For more information call 1-800-950-3859.

Circle 111 on inquiry card

USG Interiors, Inc.