create quietude

SoundScapes™ Acoustical Canopies are a dramatic way to control sound in specific areas. The preformed canopies absorb sound on all sides, creating a quieting effect when installed over workstations, reception desks and in any noisy open space. And our exclusive DuraBrite™ finish provides high light reflectance and durability. To learn more about this new acoustical solution, visit us on the web or call.

armstrong.com/soundscapes

1-877-ARMSTRONG

Armstrong®
Richter on Brick.

Architect: Richter Architects
Design Principals: David Richter, FAIA
Elizabeth Chu Richter, FAIA
Client: Texas Department of Transportation
Completed: 2003

"Brick is a common material with uncommon versatility. It is expressive, remarkably fluid, and can be crafted with beautiful details."
– David Richter, FAIA

"The variety of colors and shapes that brick offers allows for metaphorical interpretation – in this case, the earth strata."
– Elizabeth Chu Richter, FAIA

Description: The Texas Travel Information Center in Amarillo is both the gateway for visitors entering the state and for visitors entering the American West. More than 178,000 bricks were used with 7 different shades of color.
ARCHITECTURE.
Pilkington Profilit™ Channel Glass Systems

Pilkington Profilit will revolutionize the way you incorporate glazing into your designs, giving you the freedom to be creative. With Pilkington Profilit, self-supporting channel glass soars up to 23 feet. Install it vertically or horizontally, forming straight or curved walls. The glass is available in a variety of textures and colors with varying degrees of translucency, allowing light through while maintaining privacy. And Pilkington Profilit can be used in interior or exterior applications, with Nanogel® insulating aerogel to provide energy efficiency.

Call or visit our web site for complete information.

tgpamerica.com | 800.426.0279
ARCHITECTURAL RECORD

VICE PRESIDENT & PUBLISHER
Laura Viscusi, laura.viscusi@magnegrow-hill.com

VICE PRESIDENT, MEDIA SALES
Paul Bonington, paul.bonington@magnegrow-hill.com

DIRECTOR, MARKETING COMMUNICATIONS
Deborah Smikle-Davis, deborah.smikle-davis@magnegrow-hill.com

VICE PRESIDENT, CIRCULATION
Maurice Persiani, maurice_persiani@magnegrow-hill.com

DIRECTOR, CIRCULATION
Brian McGann, brian.mcgann@magnegrow-hill.com

DIRECTOR, CREATIVE SERVICES
Susan Valenenti, susan.valenenti@magnegrow-hill.com

PRODUCTION MANAGER
Stephen R. Weiss, stephen.weiss@magnegrow-hill.com

ACCOUNT SERVICES, CONTINUING ED.
Stephen R. Weiss, stephen.weiss@magnegrow-hill.com

DESIGN SERVICES
Angela Halsik, angela.halsik@magnegrow-hill.com

Matthew Healy, matthew.healy@magnegrow-hill.com

DIRECTOR, SALES, PRODUCT NEWS
Janet McLivery, janet.mclivery@magnegrow-hill.com

DIRECTOR, FINANCIAL OPERATIONS
Ike Chong, ike.chong@magnegrow-hill.com,

BUSINESS MANAGER
Tom Maley, tom.maley@magnegrow-hill.com

ASSISTANT, MEDIA DEPARTMENT
Pina Del Genio, pina.delgenio@magnegrow-hill.com

ADVERTISING SALES
BUILDING PRODUCTS
NORTHEAST (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New York, New Jersey, Rhode Island, Vermont, Eastern PA)
Joseph Somsowski - phone: (610) 278-7829 Fax: (610) 278-0996 Email: joseph.somsowski@magnegrow-hill.com

SOUTHEAST (District of Columbia, Florida, Georgia, Kentucky, Maryland, North Carolina, South Carolina, Tennessee, Virginia, West Virginia, Western PA)
Susan Shepherd - Phone: (850) 233-4332 Fax: (404) 252-4056 Email: susan.shepherd@magnegrow-hill.com

MIDWEST (Ohio, Illinois, Indiana, Kansas, Michigan, Minnesota, North Dakota, South Dakota, Wisconsin, Eastern Canada)
Lisa Nelson - Phone: (312) 233-7402 Fax: (312) 233-7403 Email: lisa.nelson@magnegrow-hill.com

SOUTHWEST/CENTRAL (Alabama, Arkansas, Iowa, Louisiana, Minnesota, Missouri, Mississippi, Oklahoma, Texas)
Bret Ronk - Phone: (972) 437-7877 Fax: (972) 437-7876 Email: bret.ronk@magnegrow-hill.com

NORTHEAST (Alaska, Idaho, Oregon, Washington, Utah, Montana, Western Canada)
Bill Madden - Phone: (503) 224-3799 Fax: (503) 224-3899 Email: bill.madden@magnegrow-hill.com

ASSOCIATIONS:
Charles Fagan - Phone: (212) 904-2547 Fax: (212) 333-7488 Email: charles.fagan@magnegrow-hill.com

TECHNOLOGY:
Mark Glaser - Phone: (415) 357-8191 Fax: (415) 357-8005 Email: mark.glaser@magnegrow-hill.com

WORKFORCE/RECRUITMENT:
Gilda Falso - Phone: (212) 904-2422 Fax: (212) 904-2074 Email: gilda.falso@magnegrow-hill.com, Diane Soister - Phone: (212) 904-2021 Fax: (212) 904-2074 Email: diane.soister@magnegrow-hill.com

PRODUCT NEWS SPOTLIGHT:
Deidre Allen, Phone: (609) 426-7738 Fax: (609) 426-7136 Email: deidre.allen@magnegrow-hill.com

Kamesha Saunders, Phone: (609) 426-7703 Fax: (609) 426-7136 Email: kamesha.saunders@magnegrow-hill.com

INTERNATIONAL:
Germang: Martin Druke - Phone: (49) 202-27169-12 Fax: (49) 202-27169-20 Email druke@intermediapartners.com

ITALY: Ferruccio Silvera - Phone: (39) 022-846716 Fax: (39) 022-83934 Email ferruccio.silvera@it

JAPAN: Katsuhir Ishii - Phone: (03) 5691-3335 Fax: (03) 5691-3336 Email: arukatsu@dream.com

KOREA: Young-Sooh Chin - Phone: (82) 481-3411 Fax: (82) 481-3414

WEB SITE: architecturalrecord.com

ADVERTISING:
Pina Del Genio - 212/904-6791, AR.advertising@magnegrow-hill.com.

SUBSCRIBER SERVICE: 877/876-8093 (U.S. only), 515/237-3681 (outside the U.S.), Subscriber fax: 712/755-7423. E-mail: arsubserv@magnegrow-hill.com.

WEB: architecturalrecord.com/reprintbuyer.com

BACK ISSUES: 212/904-4653 phyllis.moody@magnegrow-hill.com

THE AMERICAN INSTITUTE OF ARCHITECTS 2007 BOARD OF DIRECTORS OFFICER: Ed Stotlar, FAIA, President; Marshall E. Perlow, FAIA, First Vice President; Michael Broniar, FAIA, Vice President; Miguel A. Rodriguez, FAIA, Vice President; George H. Miller, FAIA, Vice President; Norman Fung, FAIA, Vice President; David R. Prekopp, AIA, Secretary; Robert Jay Gould, FAIA, Treasurer; Gregs R. Asstembrick, Assoc. AIA, Associate Representative to the AIA Executive Committee; David Crawford, CACE Representative to the AIA Executive Committee; Christine M. McNally, Executive Vice President/CFO, REGIONAL DIRECTORS: Denton A. Ambrose, AIA, Peter J. Am质量和, AIA, NCARB, LEED AP; Michael C. Ashe, AIA, Jonathan Bulger, Assoc. AIA; Donald R. Brown, AIA; David J. Brown, FAIA; Stephan Casasalinas, FAIA; Anthony J. Cordella, FAIA; James Detrano, Jr., AIA; James E. Hinkle, FAIA; Jonathan J. Freiherr, FAIA; Adam J. Gummerson, AIA; Massimo A. Gattuso, AIA; Walter J. Haffa, FAIA; Richard Jackson, AIA, MPP; Rick McFarland, AIA; Diane Van Buren Jones, Kelli L. Roll, FAIA; Peter G. Kattan, FAIA; Anne L. Lambert, AIA; Evelyn L. Stroh, AIA; LEED AP; Michael Lieber, AIA; Clark Lowsley, AIA; Stephen M. Long, AIA; Marvin L. Maciek, AIA; Clark D. Mann, AIA; John Marshall, AIA; Linda McCready-Hunt, FAIA; Lisa McCracken, Hufnagel; AIA; John Murray, AIA; PP; Thomas Nelson, AIA; Calina L. Novak, AIA; John A. Pratley, AIA; Jeffrey Porter, AIA; John W. Rogers, AIA; PA; Ken Ross, FAIA; AnneMarie Swan, AIA; William J. Stanley, III, AIA; James M. Sartain, AIA; LEED AP; Leslie L. Thomas, AIA; Edward J. Vabulas, AIA; Enrique Woofe, FAIA; AIA MANAGEMENT COUNCIL: Christine M. McNally, Executive Vice President/CFO; Beth Bash, Vice President; Member Value and Communications; Helen Dobbs; Doug; Jen, Hufnagel; SAD, FAIA, Vice President; Strategic Initiatives & Relationships; Michael P. Hugby, SPHR, CAE, Vice President, Human Resources; Richard J. James, CPA, Chief Financial Officer & Vice President, Administration; Paul E. MacDonald, Vice President, Government and Community Relations; Barb Soffa, CAE, Vice President, Knowledge & Professional Practice; Jay A. Stephens, Esq., General Counsel & Vice President, Elizabeth Stotlar, Esq., Vice President, Strategic & Business Development; David J. Constant, CAE, Assoc. AIA, Managing Director, Communities for Change; James Gust, FAIA, Chief Manage, Contract Documents; Samuel A. Hernandez, Esq., CAE, Managing Director, and Council, Contract Documents; Mimi Hibernian, Managing, Xenter, Software Solutions and Services, Richard L. Haymes, PhD, R.I.C.D., CAE, AIA, Managing Director, Knowledge Resources; Christine M. Klicks, Managing Director, Meetings, Crystal E. Mullen, Managing Director, Membership Services, Philip L. O’Dell, Managing Director, Information Technology; SAD, CAE, managing Director, Continuing Education; Terence J. Pudhro, Managing Director, Communications; Audrey J. Shafford, AIA, CAE, Managing Director, Alliances; Phil Simon, Managing Director, Marketing and Promotion; Terri Stotlar, Managing Director, Professional Practice.

Invisible engineering.

Optik™ Ferric™ inox™

CIRCUM™ HEVI® d line

HDI Railing Systems
3905 Continental Drive • Columbus, OH 43212 USA
PH: 717-285-4088 • FAX: 717-285-5083 Email: info@hdirailings.com • www.hdirailings.com

CIRCLE 05 ON READER SERVICE CARD OR GO TO ARCHITECTURECONSTRUCTION.COM/PRODUCTS/
When the Prairie School in Racine, Wisconsin wanted the roof of a newly renovated fieldhouse to match the roof of an existing structure, there was only one problem. The joists required for the project would have to be 22 feet deep, 10 feet of depth larger than anything the Vulcraft plant produced.

Enter our Nebraska team. Who brainstormed, planned an entirely new setup, then built it and assembled it (over 8 hours), having to angle joists across the production bay to make the project work.

And literally bending over backwards for our customer.

www.vulcraft.com
The impossible may become more common — but it will always be impressive.

Solarban® 70XL Solar Control Low-E Glass is an MSVD soft coat high-performance glass that delivers the impossibly impressive LSG rating (light to solar heat gain) of 2.37 — with the look of clear glass. But an even more impressive feat is that Solarban 70XL glass could help you save over $100,000 in upfront cooling system costs — and reduce long-term energy consumption. You’ll see these impressive results for yourself when you order your free copy of our latest white paper and a Solarban 70XL glass sample. Call 1-888-PPG-IDEAS.

Or visit www.ppgideascapes.com.
News

33 Worker abuse alleged in the U.A.E.
36 Gas stations go green
40 Piano designing Kimbell expansion
42 Bush library architect selection begins

Departments

25 Editorial: The last word
27 Letters
51 Archrecord2: For the Emerging Architect by Ingrid Spencer
59 Books: When architects and engineers collaborate
63 Practice Matters: Nonprofit work experience by Casius Pealer
67 Trade Show: Salone del Mobile by Rita Catinella Orrell
71 Snapshot: Mobile Chaplet by David Sokol
197 Dates & Events
216 Backpage: Guy Nordenson by Jane F. Kolleeny

Features

78 Bridges by Suzanne Stephens
Architects and engineers join forces to create memorable crossings.

Projects

89 Introduction by Russell Fortmeyer
90 The Engineer's Moment by Nina Rappaport
As the architecture profession shifts, engineers' roles expand.
96 U.S. Federal Building, California by Joann Gonchar, AIA
Morphosis
A tower shaped by performance objectives and design process.
108 Suvarnabhumi Airport, Bangkok by John Morris Dixon, FAIA
Murphy/Jahn
Feats of structural engineering contribute to exhilarating spaces.
118 Lufthansa Aviation Center, Germany by Peter Cachola Schmal
Ingenhoven Architects
A low-energy, high-tech structure makes its mark on a difficult site.
126 Portland Aerial Tram, Oregon by Randy Gragg
agps architecture
Soaring to new dramatic highs with an act of engineering bravado.

Building Types Study 872

137 Introduction: Tall Buildings by Russell Fortmeyer
140 7 World Trade Center, New York City by Russell Fortmeyer
Skidmore, Owings & Merrill
146 Sports City Tower, Qatar by Sam Lubell
AREP, with Hadi Simaan
150 Montevideo Tower, the Netherlands by Penelope Dean
Mecanoo Architecten

Architectural Technology

159 Miracle on (and Under) Second Avenue by Sara Hart
Collaboration is key for New York City's new subway line.

Lighting

169 Introduction by David Sokol
170 Wu Jiao Plaza by Andrew Yang
Zhong Song Design Consultancy
176 EnterActive by David Sokol
Electroland
179 Langeais Suspension Bridge by Robert Such
Neo Light

181 EuroIuce Review by Rita Catinella Orrell
182 Lightfair International Review by Rita Catinella Orrell

Products

187 Glass & Glazing by Rita Catinella Orrell
190 Product Briefs by David Sadighian
193 Product Resources by David Sadighian

208 Reader Service
We invite you to explore architecturalrecord.com, which now offers a new design and powerful tools that allow you to interact with, and contribute to, the site as never before. You can comment on and rate projects, recommend articles, submit photos of your work, and create an industry profile.

building types study: tall buildings
Unresolved issues notwithstanding, we are awash in new skyscrapers. But the typology’s reenergized career banks on one of two design strategies: go really tall or technologically dazzle—like Sports City Tower in Doha (left). Exclusively online, we present eight tall buildings that prove our point.

project portfolio
The “spectacular” architecture routinely featured in RECORD and on architecturalrecord.com relies more than ever on the ingenuity and creativity of the contemporary engineer. San Francisco’s Federal Building (left), Bangkok’s airport, Portland’s aerial tram, and Lufthansa’s Frankfurt headquarters all embody the principles of the new engineer.

lighting section
Designers of architectural lighting are redefining buildings’ necessary connective tissue with moments of poetry and delight, such as the installation at Wu Jiao Plaza, Shanghai (left). While their makers’ motivations differ, these three featured projects underscore infrastructure’s artistic potential.

residential: house of the month
Exclusively online: A small guesthouse by Waggoner & Ball Architects (below), done as a modern version of the dog-trot prototype, becomes the main course, as the clients fall in love with the home and decide it’s just right for weekend escapes.

archrecord
A young architect takes Manhattan with her firm, Studio ST, while students in New Orleans take on the housing crisis in their damaged city with URBANbuild. Both are finding the right housing solutions for their chosen clients. At architecturalrecord.com/archrecord2 you can learn about other inspiring designers in Design, Work, Live, and add your opinions in Talk. Only online: Is submitting to international competitions worth the effort for young U.S. firms? Let us know what you think by responding at construction.com/community/forums.aspx.

continuing education
Get CE credits by reading editorial articles and sponsored sections online. This month, our editorial opportunity uncovers all the details about New York’s T Line—the Second Avenue Subway line predicted to be the largest public-works undertaking in New York City in 50 years. Go to architecturalrecord.com for other articles and sponsored sections.

Photography (clockwise from top left): Courtesy AREP and Beixi/Midmao (Sports City Tower, by AREP, with Hadi Sinaee); © Roland Halbe (U.S. Federal Building, by Morphosis); Tim Griffith (installation at Wu Jiao Plaza, by Zhong Song); courtesy Waggoner & Ball Architects/Kerri McCafferty (Dog Trot House, by Waggoner & Ball Architects); Derek Lepper (Vancouver Public Library atrium, by Moshe Safdie and Associates); J. Hart (Jetty House, by Cube Design+Research)

www.construction.com connecting people_projects_products
C/S Sun Controls
Cool In More Ways Than One.

For 50 years C/S Custom Sun Controls have helped architects create stunning, energy-efficient buildings. Our Sun Controls reduce heat and glare to lower a building's overall energy costs, while increasing worker productivity.
Select from dozens of blade, outrigger and fascia designs. Call Construction Specialties, Inc. at (800) 416-1102, or visit www.c-sgroup.com/sun

CIRCLE 11 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Automatic doors make it possible for users, regardless of their physical capabilities, to easily, independently enter an establishment. Automatic doors instantly demonstrate hospitality and show guests that convenience and safety count. Send a welcoming message to your guests—automatically.
3M™ VHB™ Structural Glazing Tape

More than greets the eye

Clean edges and consistent color for eye appeal.

Immediate handling strength and increased productivity.

3M™ VHB™ Structural Glazing Tape has been proven in thousands of international buildings since 1990 as an alternative to structural silicone and spacer tape for glazing in curtain walls.

3M™ VHB™ Structural Glazing Tape offers the reliability you expect from 3M and an application warranty for approved projects. Please call 651-736-6076 to discuss your project requirements or for additional information please visit www.3M.com/vhb/structuralglazing.
SORRY!

We don't mean to confuse you. We just want to make your life easier by offering you more choices than the other leading brand. Fact is, we have more than a thousand different standard products, so you will have more design options...more ways for you to satisfy each and every client. No need to look anywhere else.

www.americanspecialties.com
Introducing GRAFIK Eye® QS
The new standard for lighting and shade control

Shades are integral to a total light control solution. Lutron introduces the first solution that simplifies control of the lighting and shades to provide your clients with comfort, flexibility and productivity. And, like other Lutron solutions, it can save 60% or more energy.

Experience the power of GRAFIK Eye QS at www.lutron.com/qsvizualizer

Product shown 75% of actual size.

© 2007 Lutron Electronics Co., Inc.
In the 18th century, Dr. Johnson asserted the critic's role to skewer "delusive combinations, and distinguish that which may be praised from that which can only be excused." Excuse me! In the linked-in, blog-bursting 21st century, aren't we all critics? Thankfully, the distinctions of language, between "gourmet" and "gourmand," hold fast, and some writing still warrants savoring, not merely devouring.

Since the mid-1980s, Martin Filler has contributed a medley of long critical essays on architects and architecture to The New York Review of Books. A new book by that publisher released on July 17 collects and updates Filler's essays in a single offering entitled Makers of Modern Architecture: From Frank Lloyd Wright to Frank Gehry. Arriving in time for the dog days, Filler provides something to sink our teeth into. Delicious!

Uniquely, his collection features the author's textual critique (responding to the written matter of other critics, the architect himself, curators, or writers), and his reviews of exhibitions and their accompanying texts, as much as reflections on any one architectural project. Filler's essays consist of a rich amalgam of biographical analyses, emphasizing each individual's career trajectory, with some formal analysis of the architects' built work. Refreshingly, he avoids too much of the latter, preferring to delve into matters often unexplored in the popular press. Along the way, we encounter quotable quotes, apertures, digressions, obsessions, professional sympathies, categorizations, professional prejudices, pronouncements, analogies, refutations, as well as political and social observations, and a rich, falsome exercise of the English language.

In our superficial age, when architectural criticism gasps for column inches in the newspapers, and blogs woefully lack erudition or research, Filler's assessments in The New York Review stand apart, eschewing fashion and offering polished, carefully edited and backed-up, though highly personal, assertions. If his subjects seem more familiar than the architect du jour, comprising a selective roster of 20th-century masters, Filler's razor-sharp mind and sharper tongue set him apart. We gobble up what he thinks, as well as how he serves it up.

For those seeking a point of view, he rarely disappoints: Strong opinions pepper almost every page. Filler's admiration and approbation go to architects like Sullivan who search for, and occasionally attain, higher social and philosophical ideals. Wright was "the supreme master builder of the 20th century." Mies gets a multicolored assessment, both revisionist and admiring, as a thwarted heroic figure, whose followers could not match the master's own gifts. Aalto remains "the most underappreciated giant of the Modern Movement." Filler's insight on Louis Kahn, whom he declares with the assurance of Miss Jean Brodie extolling Giotto, "the world's leading midcentury architect" (could you say that?), includes the historian Vincent Scully's role in promoting Kahn's work. He (Scully) "needed a present-day hero to fit his narrative."

Sometimes the critic tilts too deeply into a specific conversation better answered elsewhere, and thereby illustrates one of the weaknesses of the book: Our expectations exceed the essays, which were originally conceived for another audience at the more temporal Review—an assertion particularly evident as we read Filler on Berlin's Reichstag, here conflated into a discussion of the city and the architect Norman Foster. Never mind. We read on.

Gleefully, the critic relishes a genuine disembowelment—with an aim at eviscerating Samuel Johnson's aforementioned "delusive combinations"—such as the excesses of Postmodernism, or the ertz Modernism that occurred in the wake of the International Style. Like many social critics, Filler hates chrysalis and scroptophants of any stripe, particularly certain architects and fellow critics guilty of such venality. He gets the last word.

Philip Johnson sits squarely in his sights for some of those reasons. One chapter begins: "If, as the philosopher Francis Bacon wrote, 'The monuments of wit survive the monuments of power,' ... then Philip Johnson might be remembered by future generations after all."

Filler derides Johnson's personal qualities ("born salesman" and "glib improviser," as well as a Nazi sympathizer who got off light) as those of a man who changed his architectural styles as if changing a suit to match the moment. Johnson, his intimate circle, and the Museum of Modern Art, an institution in which Johnson held formidable power, form subtexts throughout the book, appearing in several essays, clearly a fascination, if not minor obsession, of this New York—based writer.

Whom does he list or leave out? In the course of 300 pages, he engages 17 architects, including the Eameses (positive review) and Calatrava (less sanguine), but manages to omit Robert Stern, Peter Eisenman, and Michael Graves, all 1980s rock stars, as well as a shopping list of current galactic lights such as Zaha Hadid, Rem Koolhaas, Jean Nouvel, and Thom Mayne. You might wish for a more complete overview, as gossipy and factfilled, as anecdotal and opinionated as this book can be. Too idiosyncratic a taste? Too hot? Some will spit it out. Ultimately, Filler's engaging book entertains and informs as it opines; then the language ceases, leaving us hungering for more of this piquant, yet savory intellectual dish.
CHECK OUT
THIS ULTRAMODERN LIBRARY
BUILDING, CLAD WITH ALPOLIC.

ALPOLIC IS PROUD TO LEAD THE INDUSTRY IN INCORPORATING ADVANCED FIRE RESISTANT TECHNOLOGY, WHICH COMPLIES WITH FIRE CODES WORLD-WIDE, AS STANDARD IN ALL OUR EXTERNAL CLADDING MATERIALS.

PROJECT: National Library Board, Singapore
ARCHITECT: T.R. Hamzah & Yeang
FABRICATOR/INSTALLER: Permasteelisa Group
PRODUCT: ALPOLIC®fr, custom white solid color

innovation • style • performance

You can't judge a book by its cover. But a lot of people are judging this world-class library building by its Alpolic-clad exterior — and raving. Alpolic's light weight, flexibility and selection of beautiful finishes and surfaces have made it a leading fabricating material for landmark public structures all over the world. And because it's backed by Mitsubishi Chemical, Alpolic is sure to stand the test of time and become a classic.

One look at a building like this one speaks volumes about the benefits and beauty of Alpolic. For more information, CALL 1-800-422-7270 OR VISIT US AT WWW.ALPOLIC-USA.COM.

©2007 Mitsubishi Chemical FP America Inc. All Rights Reserved

CIRCLE 17 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Letters

Seeing the light
I was astounded to behold the cover of your July 2007 issue. It wasn’t the architecture, although that was reasonably attractive: another Post Form Z building featuring people along a faceted wall that glowed white against the night sky. In fact, I wouldn’t have noticed the basic problem if it wasn’t trumpeted by a tag line that took my breath away for its insensitivity: “Steven Holl lights up the skies of Kansas City.”

Excuse me?! How out of touch can RECORD be? With all due respect to the work of a renowned architect, I cannot imagine a more regrettable comment given the concerted efforts worldwide to end light pollution. How is it that a leading publication would glorify the one aspect of a particular work that is perhaps better left alone? Allow me to suggest a look at DarkSky.org. Sustainable design is no longer a fringe movement or a passing fad. As a prominent publication, try to be a little more conscious about what’s worth passing on to our fellow architects and, indeed, our children.
—Joseph Cincotta, AIA
Wilmington, Vermont

Gaining from loss
I am writing to express my admiration for many of the thoughts conveyed in Robert Ivy’s June editorial, “Interpretive” [page 23], especially the need for understanding the value of—and acting to preserve—Modern architecture. I was shocked to learn of the demolition of Rudolph’s Michaels House this spring under circumstances similar to those of Wright’s Little House II. As we have witnessed time and again, it often takes a major architectural loss to breed appreciation, but it is truly unfortunate when such lessons do not carry forward. As Ivy states, many works of Modernism are, as yet, underappreciated in terms of preservation. Thankfully, organizations such as Docomomo go a long way in drawing attention to this situation, as do Ivy’s fine “Interpretive” editorial and the magazine’s “Historic Encounters” issue.
—Debra Pickrel
New York City

Rousing the critic
Robert Campbell’s “Critique” in the July 2007 issue (“Calling a truce in the style wars over government buildings,” page 53) is depressingly disappointing. The role of the critic is to shape opinion, not avoid it—doubt must be left to the artist. Campbell’s view borders upon nihilism and does not advance our understanding of the current state of architecture.
—James A. Gresham, FAIA
Tucson

Corrections
A news story about memorials [July 2007, page 34] failed to mention that Ghiora Aharoni partnered with Stamberg Aferiat Architecture to design a 9/11 memorial for St. Vincent’s Hospital in Manhattan. The story also mischaracterized the Logan Airport memorial as being focused around a “ Palace of Remembrance.” It should have read “Place of Remembrance.”

Write to rivy@mcgraw-hill.com.
Form + Function = DETAN

DETAN tension rod systems. Your solution for transparent design.

Form and function are perfectly combined in the DETAN tension rod system. Individual system solutions make it possible to brace even the most demanding structural designs, while maintaining an aesthetically pleasing appearance.

Aesthetic
Easy length adjustment with no exposed threads or turnbuckles. Translates into clean, elegant solutions for canopy supports and any other exposed bracing application.

Simple
Standard tools mean simple and convenient installation, without welding or cutting.

Safe
DETAN stands for reliable design and installation: through verified load capacities and comprehensive material inspection. On the jobsite visual inspection is quick and easy.

Efficient
High performance carbon and stainless steel materials allow small diameter rods to support high loads, while minimizing weight and cost.

Many advantages with one result: HALFEN-DEHA provide safety, reliability and efficiency for you and your customers.

Halfen Anchoring Systems · Meadow Burke Products · PO Box 547 Converse, TX 78109 · Tel.: 800 323 6896
Web: www.halfenusa.com · Email: halfen@meadowburke.com
GROHE Allure

Beauty with Reason

Refined, pure and modern; GROHE minimalista bath faucets utilize bold geometric shapes with confidence and clarity. The collections respond to our desire for products that are both minimalist and inviting. The resulting geometry is ergonomically gratifying and visually exciting. Exclusive GROHE technologies create the ultimate "enjoy water" experience.

- GROHE SilkMove® for lifelong precision and effortless fingertip control
- GROHE StarLight® chrome provides a lustrous, mirror-like shine for a lifetime
- GROHE WhisPer® provides the soothing sound of a gentle stream

Minimalist faucets from GROHE...Performance You Can Feel.

© 2007 GROHE America, Inc. | www.groheamerica.com

CIRCLE 20 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
new edges.
new finishes.

Indiana Limestone Vanderbilt Classic.

Presenting exciting new designer edge treatments and finishes for Vanderbilt Classic—an innovative, precision cut, genuine Indiana Limestone building veneer. Its modularity offers you the look of custom cut stone at a surprisingly lower cost. Discover Limestone Classics® at IndianaLimestoneCompany.com or call (800) 457-4026.

Smooth
Abrasive
Bush-Hammered
Straight Edge
Reveal Edge
Chamfered Edge Two Sides
Chamfered Edge Four Sides

CIRCLE 21 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
NEW Hanover® Pedestal Systems

The application of an elevated paver system provides the designer with new possibilities and advantages. Hanover® has developed several pedestal systems that are designed for various types of installations and site conditions.

- NEW High-Tab™ Pedestal
- NEW Flexible Leveling Shims
- NEW Elevator™ System
- Compensator® Leveling System

Compensator® can be used under NEW Elevator™ to compensate of slope.

NEW Elevator™ System patent pending

HANOVER® Architectural Products
www.hanoverpavers.com • 800.426.4242
CHANGE IS GOOD

The building industry is full of change.

And you are constantly trying to keep up. With the big changes in how the profession does business. With the countless small changes made on every project, every day.

How well do you respond to change? Are you sure that every change you make is good for business?

Bentley's Building Information Modeling and Management solutions make change a good thing. By equipping your team to respond to changes effectively, they'll embrace change and see it as an opportunity, rather than a challenge. And so will you.

By changing the way you think about change — you can transform your business.

Make change good for you. Visit www.MakeChangeGood.com or call 1 800 BENTLEY.

© 2009 Bentley Systems, Incorporated. Bentley and the Bridge are either registered or unregistered trademarks or service marks of Bentley Systems, Incorporated or one of its direct or indirect wholly-owned subsidiaries. Other brands and product names are trademarks of their respective owners.
Blood, sand, and tears: Worker abuse alleged in the U.A.E.

The remarkable development boom in Dubai and Abu Dhabi, both located in the United Arab Emirates (U.A.E.), is completely transforming these cities’ skylines and attracting the world’s top architects. But it is also exacting a serious cost. Human Rights Watch (HRW) alleges that the migrant workers vital to constructing these projects are subject to “abusive labor practices”—and architects, it contends, are complicit in the problem.

In a report titled “Building Towers, Cheating Workers,” published last November, HRW catalogued a host of abusive practices including nonpayment of wages, squalid or dangerous working and living conditions, and the denial of proper medical care. It stated that in 2004 alone, more than 800 construction workers died out of an estimated 2.7 million—although the government claimed only 34 deaths that year. In comparison, the U.S. Department of Labor tracked 1,186 fatalities out of roughly 9 million workers in 2005.

Most laborers in the U.A.E. come from South Asian nations including Bangladesh, India, and Sri Lanka. Many find work by taking expensive loans, averaging $2,000 to $3,000, from recruiting agencies in their home countries—and then devote most of their wages to paying off these advances. Employers in Dubai often pay far less than promised, HRW alleges, and most hold workers’ passports for leverage. The average worker earns $175 per month.

Hadi Ghaemi, who authored the HRW report, says that exact statistics are almost impossible to find because the U.A.E. releases little data, but that the government’s own figures indicate more than 20,000 migrant workers have filed complaints about the nonpayment of wages and “labor camp” conditions. Workers have also staged riots. In March, at the site of Skidmore, Owings & Merrill’s Burj Dubai (photos above), hundreds of frustrated laborers smashed cars and ransacked offices, causing an estimated $1 million in damages, according to The Associated Press.

Nicholas Labuschagne, an adviser to the U.A.E. government and an executive at Dubai Holding, one of the country’s key investment firms, says that the U.A.E. is addressing these problems. “[U.A.E. Prime Minister] Sheik Mohammed is embarrassed by the criticism that the labor issues have arisen,” he says. “We’re hoping we can show some very significant progress within the next six months.”

Since 2006, Labuschagne notes, the U.A.E. Ministry of Labor has conducted 83,000 inspection visits, resulting in sanctions against 6,000 firms for job-site violations, and has suspended work permits at 1,300 businesses due to the nonpayment of wages. Moreover, the government has hired 2,000 more inspectors, who are now being trained, and is developing a new center to track labor statistics, including worker injuries and deaths. And to combat unscrupulous recruiting agencies, the U.A.E. is developing agreements with nearby countries to ensure that all workers fully understand their contracts before being granted work visas.

Despite these steps, the main sticking point remains labor organizing, which Labuschagne says is a thorny security issue in a country where the estimated 2.7 million immigrant laborers rivals the size of a native-born population of 4.5 million people; in Dubai alone, there are almost 1 million migrant workers, compared to 1.4 million residents. In February, the U.A.E. released the draft of a revised labor law requiring companies to pay for workers’ health care and employment permits, and requiring improvements in construction-site (continued on next page)
ON THE BOARDS

Nadel Architects, based in Los Angeles, designed a 2.3-million-square-foot office and retail complex for the

King Faisal Foundation, in Riyadh, Saudi Arabia. Its four glass towers, sheltered by perforated aluminum sunscreens, curve apart like flower petals—embracing, rather than challenging, Faisal’s original building nearby, designed by Foster + Partners. David Sokol

Zaha Hadid Architects’ Opus, a 921,832-square-foot office and retail complex in Dubai, consists of three 305-foot-tall towers that appear as a single cube pierced by a 98-foot-wide “free-form void that has been eroded from the solidity of the building,” Hadid says. Tony Illia

Joachim Hauser, a German aerospace architect, has designed

Hydropolis, a 1.1-million-square-foot hotel to be located 20 feet below sea level off the coast of Dubai. The curvy structure lacks “harsh architectural design components of land-based edifices,” Hauser says. Dianna Dilworth

For full coverage on these projects: architecturalrecord.com/news/

Foster’s Masdar City more than a mirage?

Foster + Partners is designing the world’s first zero-carbon, zero-waste city in Abu Dhabi. Named Masdar City, which means “the source,” the 1,483-acre project will include commercial and manufacturing space dedicated to developing eco-friendly products, housing, a university, and the headquarters for Future Energy Company, which is spearheading the initiative.

Although the desert might seem an unlikely location for such a large sustainable undertaking, Masdar will tread lightly on the landscape by harnessing solar power and relying on construction features that resist high temperatures, including extra shading and slab cooling. Its design is rooted in the Arab tradition of walled cities—but Masdar’s stone-and-mud walls will be covered in photovoltaic panels capable of generating 1.30 megawatts. Along the site’s northern edge, the walls will be more permeable to let in breezes. Electricity will also come from photovoltaic cells integrated into rooftops and a 20-megawatt wind farm. The city will get its water from a solar-powered desalination plant.

Since Masdar will be car-free, shaded paths will make walking more bearable in the region’s extreme climate. Land surrounding the city, which is 20 miles outside the center of Abu Dhabi, will contain wind and photovoltaic farms, as well as research fields and plantations that will supply crops for the city’s biofuel factories. These fields will also help reduce waste by acting as carbon sinks to offset gases produced in the factories—and they will be irrigated with gray water drawn from the city’s water treatment plant.

Masdar will be developed in phases centered on two plazas. The first stage includes construction of a 60-megawatt photovoltaic power plant that will supply electricity for constructing the rest of the city. This will be followed by a 130-acre main square. Foster finished the initial phase of master planning this spring. The project’s engineers include E.T.A., which is overseeing the renewable-energy components; Transsolar; WSP Energy; and Flack + Kurtz. Designers estimate that it will take 10 years to build out the entire city, with structures ultimately occupying nearly half of the site. When complete, Masdar will be home to 45,000 people and attract an additional 60,500 daily commuters, who will arrive in part via a new rail line.

“The biggest issue of all is to make sure that the city is balanced and will create as much energy as it uses throughout the time it is being built,” says Gerard Evanden, senior partner in charge of the project at Foster + Partners. “The scale of the project will have the density of Venice, so it will grow gradually. Hopefully the knowledge and the technology of efficient materials will grow too.”

Some of that future knowledge will be homegrown. Masdar’s university is set to open by 2009, with 30 percent of the student population housed on site. Its students will be encouraged to participate in the development of the city while working on graduate degrees in sustainability. Dianna Dilworth

(continued from previous page)

safety. But Ghaemi notes that there is no time frame for this draft to become law. A March follow-up report by HRW called the draft a “violation of international standards” and cited “major omissions,” including the prohibition of labor organizing and strikes, ambiguity about the minimum employment age, the absence of provisions to ban passport confiscation, and inadequate enforcement or penalties for violations of the law.

Ghaemi contends that although architecture firms in the UAE rarely control worker conditions, they should consider themselves complicit in abuses. “The people designing these facilities should know brick by brick how they are being built,” he says. “Labor is an inseparable part of getting all of these structures up.”

Several architects working in the U.A.E.—including SOM, Perkins + Will, and FXFowle—were contacted for their opinions but most declined comment. Among those that would talk was HOK. “We’re a small component in the equation, and I don’t have control over how other people operate,” says Daniel Hajar, regional manager for its Gulf operations. “But I do know how we operate: We operate [in Dubai] as we would if we were in the United States. We don’t engage in any activities that would put us at risk with the Department of Labor.” He adds that the same goes for firms with whom HOK works on jobs. “The contractors here have really raised the bar in terms of how they work.”

HRW hopes that these trickle-down improvements will spread to other parts of the world where abuses are common, such as China and Malaysia. But absent a concerted push for reforms, or pressure on construction companies, observers fear that governments will continue to look the other way. Sam Lubell
The playground just got more interesting.

Now, enjoy more design options than ever. Like 19 clad colors at standard pricing, seven new casings, four new subsills—all in cladding that exceeds AAMA 2605-05 specification. Plus, we have architectural service reps available for consultation. What will you create with your newfound freedom? Visit marvin.com/clad for our free clad brochure or call 1-800-236-9690.
Parking garages driven to good design

The depressing amount of time most Americans spend sitting in traffic has an architectural counterpart: devoted to faceless garages and parking lots. But as cities get serious about curbing pollution and congestion, and rising land prices drive developers to make the most out of tight sites, parking is also getting some architectural attention.

At the recently opened Museum Residences (RECORD, May 2007, page 222), across from the new Hamilton wing of the Denver Art Museum, Studio Libeskind and Davis Partnership wrapped a 980-space parking garage with the complex's 55 condominium units. The top of the garage, which provides parking for the museum as well, contains a 4-acre landscaped garden for the complex's residents. "Other architects might say, 'We'll put the garage underground and we'll valet park,'" Libeskind explains. "But that's very expensive, so I said, 'Let's do a normal garage, but create an urban setting.' We put recreation on top and used the garage as a hinge of new development. The car is subsumed by the pleasures of living or walking or using the space. We're using the parking to reduce focus on the car."

Even car-centric Southern California is embracing similar ideas. Moore Ruble Yudell treated its brief for the Santa Monica Civic Center garage as a challenge. "Parking structures make up our cities," says James Mary O'Connor, AIA, a firm principal, "So we wondered: How can they be about more than parking?" The designers responded with a 900-space facility that features ocean views and a plaza-level café. With photovoltaic panels on the roof and room for bicycles among the automobile bays, it is the first parking structure to earn LEED certification.

The building's six-story facade uses multicolored channel-glass bays mounted in white precast-concrete shells to suggest a rushing crowd. With such detail, O'Connor suggests, parking facilities can become landmarks that attract real crowds. Since it opened in March, the garage appears to be doing just that. "I went by at night and saw tourists taking pictures of each other in front of the facade," O'Connor says. "I thought, 'Well, we've done what we've set out to do.'"

Alec Appelbaum

Gas stations go green, from fuel to finishes

As gasoline prices speed toward the $4-per-gallon mark, consumers are buying hybrid and flex-fuel cars or filling up with biodiesel, and new ethanol plants are sprouting up to squeeze an alternative fuel from corn.

Fittingly, the retailers of these cleaner fuels are using green design to make an architectural statement that their pit stops are as ecoconscious as their fuels.

In Eugene, Oregon, SeQuential Biofuels opened the state's first commercial biofuel facility last year. The station dispenses ethanol as well as locally sourced biodiesel. Company cofounder Ian Hill worked with his mother, Susan Hill, AIA, an architect based in Lexington, Kentucky, to incorporate green features into the station's design. A roof embedded with a 32.6-kilowatt photovoltaic array shelters the pump islands; its central panels have clear backings to transmit more daylight. The roof above an accompanying 2,000-square-foot convenience store also received a green treatment: It is planted 5 inches deep with 4,800 native Oregonian plants. Bioswales adjacent to the parking areas filter storm water.

The roofs of both SeQuential Biofuels (left) and Helios House (above) feature plantings as well as photovoltaic cells.

Alan Elliot Goldberg, FAIA, a former design consultant to ExxonMobil, has developed a prototype station that embraces sustainable materials as well as solar power, which is used to create hydrogen fuel via electrolysis. Adapted from his Advanced Refueling Retail Center concept, it dispenses six different kinds of fuel. The 5,000-square-foot station will include a convenience store and an information center for hydrogen power. "If you're introducing a new product, you should have a new concept," Goldberg says of its design. Developed by the ARRC/H2 Alliance, the first station is planned for Syracuse, New York.

Will the green principles adopted by this small group infiltrate America's massive network of gas stations? BP may have the answer with its Helios House demonstration project, designed by Office dA with Johnston Marklee. Located on a 10,530-square-foot site in Los Angeles, it produces energy via photovoltaics, captures rainwater for irrigation, and reduces the urban heat island effect with a drought-tolerant green roof. Ironically, although these green features make the station eligible for a LEED-Gold rating, Helios still dispenses old-fashioned gasoline. At least it's a start.

David Sokoł
UNCONTROLLED, WATER SHAPES NATURE.

Controlled, it can shape our future.

The Sloan Water Efficiency Division was established to identify and develop the most advanced plumbing efficiency systems — products which control water and contribute toward LEED® credits. Sloan is THE Water Efficiency Company.

- Solis® Solar-Powered Faucet
- Waterfree Urinals
- FLUSHMATE® 1.0 gpf Pressure-Assist Units
- Crown® HET Flushometers
- Dual-Flush Flushometer
- XLERATOR® Hand Dryers

SLOAN
For more information call
800-9-VALVE-9 (800-982-8389) ext. 5034
www.sloanvalve.com

In China:
Sloan Valve Water Technologies, (Suzhou) Co. Ltd.
Suzhou New District, China
www.sloan.com.cn

CIRCLE 25 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Action Jackson: Mississippi downtown booms

The rejuvenation of downtown Jackson, Mississippi, was already under way before 2005, but it kicked into high gear following Hurricane Katrina. The Gulf Opportunity Zone Act boosted a preservation tax credit to 26 percent, up from 20 percent. Although this incentive expires next year, it has spurred the repair of older buildings—and new developments are under way, too. “Over the last six years, local developers took a special interest in downtown,” says John Lawrence, president of Downtown Jackson Partners, a non-profit managing the renewal. “But now national investors are looking at us, and that’s exciting.”

Much of the development is concentrated at the central business district’s southeastern edge. More than $450 million of construction is anticipated or currently in progress, including hotel, office, and residential buildings. One project that adds a bit of everything is the King Edward Hotel, a 1923 palazzo-style edifice that is being reconfigured into a Hilton hotel, 60 apartments, and offices. Asbestos remediation in the 300,000-square-foot building, which has stood vacant since the 1960s, finished this spring, and the $75 million construction project will conclude in mid-2009. New Orleans-based Historic Restoration is handling the design.

A few blocks away, an all-new project is transforming several parking lots into the Telecom Center, a convention-center complex designed by Miami-based Arquitectonica in partnership with locally based Dale & Associates. The first section, an 85,400-square-foot theater-and-meeting-room facility with an anodized aluminum skin, opened last year. Its cavernous second story, whose frame resembles a flattened accordion pleat, cantilevers over a pedestal. An atrium features a 50-foot-tall window along its 100-yard length, providing clear views of Jackson’s skyline, making the space a popular venue for weddings. The balance of the convention center, encompassing another 259,000 square feet, is set for completion in January 2009. “We knew a project of this magnitude could really energize downtown Jackson,” says Bernardo Fort-Brescia, an Arquitectonica principal.

Other projects aim to do the same thing. The New York City–based H3 Hardy Collaboration designed a new federal courthouse that will be located nearby. Three large window walls will jut like TV screens from an articulated precast-concrete facade, allowing natural light into nine of 12 courtrooms, all of which will sport an unusual oval shape. Construction on the $115 million, 395,000-square-foot building will be completed in 2010.

Opening in June was the new Mississippi Museum of Art. Dale & Associates’ design raised the roof of an existing masonry structure, creating window-lined eaves, and added a mahogany canopy that stretches to a fountain-lined plaza. The glass-fronted museum, with 54,000 square feet across its single level, plays off the large window of the Telecom Center across the street. Glavé & Holmes Associates, of Richmond, joined Dale on the project.

Dale is also consulting on Capital City Center, a $209 million mixed-use project that calls for 1.9 million square feet of hotels, 350 apartments, offices, and shops. It will occupy a prominent four-block site across from the convention center; an architect has yet to be chosen. C.J. Hughes

Margaret Helfand, FAIA, dies at 59

Margaret Helfand, FAIA, died on June 20 at the age of 59 of colon cancer. Since opening her office in 1981, Helfand had created a body of work distinguished for its clean, Modernist vocabulary and skillful use of natural materials, combined with a quiet and subtle inventiveness.

Female architects often find themselves relegated to designing houses and interiors for their entire careers, but Helfand was able to start small and go on to execute the large-scale institutional and commercial work that is more frequently the preserve of her male counterparts. Her best-known projects include the Unified Science Center, at Swarthmore College, designed with Einhorn/Yaffee Prescott [Record, December 2004, page 198], and the offices of Automated Trading Desk, in Mount Pleasant, South Carolina, with McKellar & Associates [Record, June 2003, page 156].

Born in Pasadena, California, Helfand completed her undergraduate education at the University of California, Berkeley in 1969—where she also earned her M.Arch., in 1973. Two years later, Helfand came to New York City, where she joined Marcel Breuer Associates. She remained there until opening her own office. Among numerous awards recognizing her accomplishments, she won a Rome Prize to work in residence at the American Academy in Rome from 2002–03, and she was named a Fellow of the AIA in 1998.

Helfand is survived by her husband of 28 years, Jon Turner, and a sister, Judy Helfand. A celebration of her life will be held Tuesday, October 9, in New York City at 6 p.m. at the 15th Street Meetinghouse of the Friends Seminary. It will be followed by a reception at the National Arts Club, 15 Gramercy Park South.

Suzanne Stephens

William LeMessurier, 1926–2007

Charismatic, daring, artistic. We don’t always associate these qualities with structural engineers, but the highly esteemed William LeMessurier, who passed away June 14 at the age of 81, embodied all of them. Trained as an architect at the Harvard Graduate School of Design, he graduated from the Massachusetts Institute of Technology with a master’s degree in building engineering and construction in 1953.

Since starting his practice in 1961, LeMessurier distinguished himself with his sensitivity to architects’ aspirations. “He was a real collaborator—he understood what an architect was trying to do and was better able to respond to architects’ needs than the normal structural engineer,” says Mysore Ravindra, president and principal structural engineer of LeMessurier Consultants. He points to LeMessurier’s work on the Federal Reserve Bank of Boston and New York’s iconic Citicorp building, both designed by architect Hugh Stubbins, as prime examples of the engineer’s understanding of architecture.

In addition to working at his consultancy, LeMessurier taught at both of his alma maters. He retired in 2003, when an advancing case of Alzheimer’s obliged him to step down. His wife, Dorothy, says that a memorial service is tentatively scheduled for October 13 at the Harvard GSD. David Sokol
Presenting glass so cool it draws a crowd.

SageGlass® electronically tintable glass gives you the power to change your environment indoors without blocking your view to the outdoors. Now you can enjoy all of the sun’s benefits while rejecting its undesirable qualities such as excessive heat gain. This grants you the freedom to design with more daylighting as you create a comfortable, productive and energy-efficient environment.

SageGlass glazing does what no other glass can do – it switches from clear to highly tinted at the push of a button. This provides an ultra-low solar heat gain coefficient when you need it, and high visible light transmission with spectrally selective properties when you don’t. Revolutionary, but not unproven – SageGlass technology has been tested for years by the U.S. Department of Energy with outstanding results.

Why limit yourself to conventional glass with add-on solar control devices? Specify SageGlass glazing in your next building for a design that’s hot, but a space that’s not. To learn more, call SAGE Electrochromics, Inc., 1-877-724-5321 or visit sage-ec.com.

SageGlass products are built with Pilkington TEC™ Glass.
Mexican museum will foster tolerance

Boxcar (right), used by the Nazis to transport people to death camps in Poland, is installed at Mexico’s new Museum of Memory and Tolerance (left). The boxcar, to make this abstract concept real. According to Arturo Arditti, a principal of Arditti + RDT Arquitectos, just this sort of museum is needed in Mexico. “There’s a lack of knowledge about genocides elsewhere in the world,” he explains. “This museum will educate people about history, but it will also show them the importance of diversity, which is not widely addressed in Mexico.”

The 70,000-square-foot museum is, significantly, located in Piazza Juarez adjacent to the Mexican Ministry of Foreign Affairs and a federal courts complex, which was designed by Legorreta + Legorreta. Arditti, together with his father and brother—who make up the family-owned Arditti + RDT—took aesthetic cues from these government buildings. Wood-framed windows, inset into the exposed concrete walls of the podium, continue a rhythm established on the ministry’s facades. A four-story cube rises from this base. Along its south elevation, facing a plaza defined by the Legorreta buildings, a glass wall allows light into a central atrium.

A children’s memorial, intended for children, will be located inside a small cubic volume cantilevered above this internal void from two supports—“like two hands holding it,” Arditti says. While the Polish boxcar is unquestionably the museum’s most important historic artifact, Arditti sees this children’s space as its main architectural and symbolic element. “The only way to change prejudice is to educate kids,” he says, “because older people won’t be able to change.”

Saitowitz/Natoma’s Tampa museum approved

Four times could be the charm for the Tampa Museum of Art, in Tampa, Florida. The museum’s building committee voted unanimously in May to forge ahead with Stanley Saitowitz/Natoma Architects’ design for a new facility to be located on the site of its existing home, which will be demolished. The committee chose the San Francisco–based architect last November. Trustees had nixed a design by Rafael Viñoly in 2004, citing concerns over that project’s estimated cost, as well as two other schemes.

Saitowitz/Natoma’s 68,000-square-foot building, the first phase of a possible larger structure, takes the form of side-by-side cubes—a two-story box with tall ceilings containing galleries, and a three-story box for support spaces—connected by a steel bridge and cantilevered over a glass-enclosed podium. The cantilever helps elevate most of the museum above the city’s flood plain and provides shading for a park and sculpture garden. The cubes’ curtain wall will be composed of two layers of perforated metal that allow daylight in and views out. Saitowitz describes this surface as “rippled and shimmering” like the Tampa waterfront.

LED lights, sandwiched between the metal facade layers, will project changing colors at night. Artists can control this lighting for site-specific installations. The museum’s interior will feature a large lobby with a 40-foot-by-40-foot skylit atrium. Galleries wrap around it, enclosed by the same perforated metal as the facades. A landscaped green roof will provide sustainability benefits and space to host functions.

Construction on the new building is expected to begin early next year and be completed by 2009. The museum is raising $25 million toward capital costs and its endowment, while the city has pledged $17.5 million in Community Investment Tax bonds. S.L.
sustainable

Sustainable solutions that support the environment.

Putting our mark on the future
architectural aluminum systems • entrances + framing • curtain walls • windows | kawneer.com
CIRCLE 27 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Razing Arizona: Phoenix Modern threatened

If the fate of its midcentury bank buildings is any indication, Phoenix is withdrawing valuable architectural assets from its skyline to make way for growth in what is the nation’s fifth-largest city. Already lost are two celebrated neighborhood bank branches razed earlier this year: the Ed Varney–designed First Federal Savings branch, and the geodesic-dome Valley National Bank, in nearby Tempe, designed by Weaver & Drover, now called DWL. Dating to the early 1960s, they expressed Phoenix’s postwar commitment to regional architecture.

The Valley National was the brainchild of longtime bank president Walter Bimson, an arts patron and friend of Frank Lloyd Wright, who dismissed drive-up windows and preferred that customers meet with tellers face-to-face. Preservationists now worry that another former Valley National, currently a Chase Bank, could be threatened. Located in the Arcadia neighborhood, this 1967-vintage building is often mistaken for a work by Wright. Its precast-concrete mushroom columns, view windows, and the careful interweaving of modern materials with hand-selected local rocks are in fact Wright-inspired touches by Weaver & Drover project architect Frank M. Henry, who still teaches at Taliesin West.

The 4.7-acre Chase site includes the 9,000-square-foot bank, a parking lot, and a greenbelt park that is the last to buffer commercial and residential uses in Arcadia. But developer Opus West has proposed replacing the park and some of the parking lot with a complex containing condominiums, restaurants, and retail space. “Our plans call for a design that is appropriate in today’s development market and preserves the bank branch,” says Jeff Roberts, the firm’s vice president of real estate development.

Critics respond that even if the bank itself is spared, its original intent would be destroyed. “The new building would intrude on the historic context and site of the bank, which was created and designed to be a combination of architecture, public art, and open space,” says Arcadia resident Roger Brevoort.

Opus West’s project awaits a hearing this summer before the Phoenix Planning Commission—a meeting at which the developer can bank on hearing from Brevoort and others. David M. Brown

Bush library architect selection begins

It’s getting to be legacy time for President George W. Bush, and that means building a presidential library—which, after months of official denials and equivocations, is headed for Southern Methodist University (SMU), in Dallas, the alma mater of first lady Laura Bush. This location was confirmed in an RFQ issued on May 24 by 3D/I, a Houston-based firm hired by the Presidential Library Foundation to oversee the selection process.

The RFQ outlines a 145,000-square-foot library and 40,000-square-foot public-policy institute on “property that SMU recently acquired.” The project must be compatible with “the distinct architectural character of SMU,” that is, Georgian, and “commemorates and celebrates the accomplishments of President Bush,” Kevin Sloan and Alan Chimacoff, then both of Hillier Architecture, assembled the master plan. A dozen architects received the RFQ. They include Cesar Pelli Associates, Robert A.M. Stern, HOK, and Hammond Beeby & Staples, as well as Texas-based Lake/Flato, Overland Partners, HKS, and Beck Architecture. These firms had until July 25 to provide management plans; a winner could be announced this month.

The RFQ confirmed what observers suspected since SMU beat out Baylor, Texas Tech, and the University of Dallas in a high stakes competition last fall. But SMU’s coup was overshadowed by lawsuits initiated by property owners who contended that the universityduped them into selling on the cheap, as well as by harsh criticism from SMU professors who fear that Bush’s public policy institute will be a partisan think tank. Although SMU prevailed in these suits, it’s unclear how much influence professors will have over the independently staffed policy institute. Also unclear is an exact location on campus where the library will be constructed, and a price tag for the project, although this is believed to be roughly $200 million. D.D.

Taliesin regains HLC accreditation

The Frank Lloyd Wright School of Architecture regained full accreditation from the Higher Learning Commission (HLC) in June. Its future had been in doubt since the HLC placed it on notice in 2005, following falling enrollment and turmoil within the Frank Lloyd Wright Foundation, which runs the school. Maintaining HLC accreditation is a prerequisite for National Architectural Accrediting Board accreditation, which the school currently has for its master’s program.

“The stakes were very high for accreditation,” observes Victor Sidy, AIA, who was appointed as the new dean two years ago.

HLC reaccreditation marks a bright spot for the otherwise beleaguered Wright foundation, which has suffered financial woes and board turmoil during recent years. In response, the group revamped its organizational structure. Among the changes: The Taliesin Fellowship, a group of longtime Wright disciples, forfeited veto rights on the foundation board. Tony Illia

AIA’s billings index posts healthy gain

The American Institute of Architects’ Architectural Billings Index gained 2.3 points in May, for a total score of 55, after holding steady during the previous two months. Any score above 50 reflects growth. The number of new business inquiries, meanwhile, declined slightly to 62.4 points. These indices are prepared based on surveys sent to 300 mostly commercial design firms. Studies suggest they are a good predictor of construction levels nine to 12 months in the future. J.M.
No worries. We've got your back.
(And all the other sides as well.)

When it comes to architecture, creativity in general is risky. But some projects are more prone to risk than others. Travelers understands this, and offers a wide range of insurance and risk management solutions. For more information on Travelers insurance for architects, contact your independent agent or call 877.237.6588, ext. 32253. Because whatever can go wrong doesn’t have to. And certainly doesn’t have to affect you.
VT DOORS. Everything you could want in a door.

FIRE PROTECTION TO 90 MINUTES | HOT PRESS TECHNOLOGY | MATCHING WOOD DOOR JAMBS
CATEGORY A POSITIVE PRESSURE | STC-45 ACOUSTICAL RATING | FACTORY-INSTALLED GLAZING
INDIVIDUAL PROTECTIVE POLYWRAPPING | WATER-BASED ADHESIVES | GREENGUARD™-CERTIFIED

www.vtindustries.com
RMJM Group bought Hillier Architecture for $30 million on June 18. For Princeton, New Jersey-based Hillier, which has 350 employees in five offices nationwide and in China, the deal represented the end of a two-year process initiated by former chairman J. Robert Hillier. "We have been exploring various ways to transition the firm as I got closer to being more senior than I wanted to be," explains Hillier, who founded his firm in 1966. Peter Morrison, RMJM's C.E.O., adds that acquiring Hillier gives the Edinburgh-based firm an established presence in the U.S.—the last major market that this 750-person global giant had yet to enter. The combined firm now has more than $15 billion in projects under design. (Hear a podcast with Hillier and Morrison at architecturalrecord.com.) J.M.

Foster + Partners has designed Yugra, a 919-foot-tall skyscraper for developer STT Group in the Siberian oil boomtown of Khanty Mansiysk. The 56-story, crystalline tower will be among Russia's tallest. Situated in a wooded hillside at the edge of town and flanked by two diamond-shaped buildings, Yugra will contain shops, offices, two hotels, and residences. Construction on the 1.7-million-square-foot complex is set to begin next year and finish by 2012. Paul Abelsky

Harlem will get its first major office building in three decades: a striking glass tower designed by Swanke Hayden Connell Architects for Vornado Realty Trust. Named Harlem Park, the 340-foot-tall, 21-story structure will be the neighborhood's tallest. It replaces a parking lot located at Park Avenue and 125th Street, a gritty corner yet to be affected by the area's booming residential and retail development. "We embraced the squat and masculine forms of the Harlem neighborhood," says Roger Klein, a design principal, of the building's irregular composition of stacked boxes. Construction is expected to begin this month and finish in 2009. Jenna M. McKnight

Coop Himmelb(l)au's first project in the Americas, the Akron Art Museum's John S. and James L. Knight Building, opened on July 17. The 63,000-square-foot wing adds to an 1899 Renaissance Revival structure. The addition's aluminum-skinned "Gallery Box" floats in a 51-foot cantilever, while a 57-foot-high "Crystal"—a volume that connects it to the older structure—flings glass shards at arrhythmic angles to enclose a new entry and atrium. Topping it is the "Sky Cloud," a 327-foot-long cross whose wings cantilever to distances of 70 feet. Charles Rosenblum

ENDNOTES
- Arcadis, a Dutch environmental and infrastructure engineering firm, acquired Baltimore-based RTKL Associates for an undisclosed amount in July.
- Oldcastle Glass purchased Vistawall Group, making it the largest manufacturer of architectural glass and aluminum glazing systems in North America.
- The Royal Institute of British Architects awarded Grimshaw Architects' Southern Cross Station in Melbourne its prestigious Lubetkin Prize.
- Mitchell E. Sawasy, AIA, of Rothenberg Sawasy Architects in Los Angeles, was voted president-elect of the International Interior Design Association.
Every day at 3pm, our product goes through the ultimate torture test.

Los Angeles Unified School District
Los Angeles
Von Duprin User Since 1948

Few things can hold up under the pressure of several hundred kids headed for freedom. Which is why the L.A. Unified School District uses Von Duprin exit devices. Because they're built to endure the highest levels of abuse, installing Von Duprin now means you won't have to worry about unnecessary repairs and maintenance later. If Von Duprin can survive some of the most rough-and-tumble kids in the country, then you can be sure it will take whatever you throw at it.

Von Duprin
Never Compromise.

CIRCLE 30 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Protection from Wind, Rain & Mediocrity

Select a door that's more than a door

Why choose an ordinary Terrace Door for a hi-rise when you can select something more?

We build doors that do more than hold out the wind and the rain. We apply more than 50 years of experience to the design and manufacturing of our Series 900 Terrace Door. That translates into exceptional quality, top-flight engineering, outstanding performance, and an elegant style that transforms any space into a room with a view.

Check out our specs and we think you'll agree that for durability and appeal, this door can stand the test of time. Now that's beautiful.

U.S. Aluminum. Build on our experience.
elegantly EFFICIENT

free the usable space in your core design

Nature blends alluring design with masterful use of space. If you're using enclosed elevator lobbies for smoke protection, your elevator core design may be consuming valuable functional space.

The Smoke Guard® system allows you to redeploy this valuable floor space. Our innovative design is virtually invisible in your design, releasing costly floor space for occupied areas.

Look to nature for inspiration. Look to the Smoke Guard® system for elevator core smoke protection.

consider the possibilities ...

WWW.SMOKEGUARD.COM

INNOVATIVE SMOKE CONTAINMENT FOR INNOVATIVE PROJECTS

CIRCLE 32 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Klai Juba Architects is a Las Vegas based architectural firm specializing in the planning and design of gaming resorts and hospitality projects.

JOIN OUR TEAM
Positions Available in:

Las Vegas, NV
- Project Managers 8+ years
- Project Architects 5-10 years
- Job Captains 2-5 years
- Architectural Graphics/ 3D Architectural Designers

Miami, FL
- Project Managers 8+ years
- Project Architects 5-10 years
- Job Captains 2-5 years

Tampa, FL
- Project Managers 8+ years
- Project Architects 5-10 years
- Job Captains 2-5 years

www.KLAIJUBA.com

Please send employee inquiries to: careers@KLAIJUBA.com
One company ... taking a wider view.

The Vistawall Group

RadioShack® Corporate Headquarters – Fort Worth, TX
Architect: HKS, Inc. – Dallas, TX

Our wide range of products covers the full landscape of design possibilities.

From grand entrances to grand views, sunny atriums to airy offices, The Vistawall Group has it all covered, with custom Vistawall curtain walls, entrances and storefronts, plus our popular Moduline window systems, Naturalite skylights and Skywall translucent systems. And with streamlined production, aesthetic consistency, precise structural integration, on-spec performance and peerless project management, we’ve covered all the other bases, too. When you’re selecting products for the exterior of your next building, give us a call.

Potential LEED® Credits:
EA Credit 1 - Optimize Energy Performance
EA Credit 2 - On-Site Renewable Energy
MR Credit 4.1 and 4.2 - Recycled Content
EQ Credit 2 - Indoor Environmental Quality - Increased Ventilation
EQ Credit 6.2 - Controllability of Systems
EQ Credit 8.1 and 8.2 - Daylight and Views

vistawall.com
1.800.869.4567

CIRCLE 34 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
For and about the emerging architect

A young architect takes Manhattan, while students in New Orleans take on the housing crisis in their damaged city. What’s the connection? Both are finding the right housing solutions for their chosen clients. Go to architecturalrecord.com/archrecord2 to learn about other inspiring designers in Design, Work, Live, and add your opinions in Talk. ONLINE: Is submitting to international competitions worth the effort for young U.S. firms? Respond at construction.com/community/forums.aspx.

Design

Studio ST: From inside to the ground up

When Israeli architect Esther Sperber left Pei Partnership Architects to strike out on her own with Studio ST in 2003, she was excited, nervous, and up to the challenge. “Having the opportunity to work so closely with Mr. Pei was amazing,” she says. “It felt like we were dealing with the end of High Modernism. I knew it was a gamble to start my own firm, but I was interested in trying something new, and putting into practice some of the technologies I had learned in school.” That was Columbia’s Graduate School of Architecture, which Sperber attended after moving to New York from Jerusalem in 1997.

“There was a huge emphasis on doing those crazy computer-generated blobs when I was there,” she says. “The blobs weren’t that interesting to me, but the technology was. I’m very interested in expanding the palette of forms, construction methods, and ways of making spaces, as a means of allowing a better focus to try to create places and spaces for human activity and interaction.”

Sperber spent her first year on her own sharing an office with another young firm, dZo, and the two practices collaborated on a number of international competition submissions. “Competitions are refreshing and fun,” she says. “Though there’s a side to them that’s a little exploitative, they’re an opportunity to think through design challenges.” After that first year, word of mouth got Sperber interior renovation jobs, and she has been able to put her philosophies and expertise into action ever since, as her two-person firm now has a roster of high-end residential renovations completed or under way, as well as new construction projects for real estate developers. While she enjoys the high-end residential projects’ big budgets,

Mediatheque, Carnoux-en-Provence, France, unbuilt
A modern library (above) where a bookshelf/wall of stacked glass-and-concrete blocks links inside and out.

National Library of the Czech Republic, Prague, unbuilt
This library (below) calls for reading halls, a theater, lecture halls, offices, work spaces, labs, and book-storage areas that celebrate interaction with the public.

Village Duplex, N.Y.C., 2006
A 2,200-square-foot duplex (above) with a series of differentiated spaces including a glass-and-metal conservatory and large dining room.
she's excited about her latest ground-up projects, including a private house in New Jersey. "It's a small budget, but with clients who are very open to new ideas. And working with a tighter budget forces you to focus on simplicity, space and light, and efficient proportions."

Efficiency is a big part of Sperber's design philosophy, which is where her love of new technology comes in. "When anything is cut by a computer-generated machine, you can use smaller pieces and save materials and time," she says, referring to a home project in Atlanta, Georgia, currently in design called the Slice House (view plans at architecturalrecord.com/archrecord2), where she will use precut and prewired structurally insulated panels that are attached to one another and don't require additional stick framing. The home will also have everything in place to easily add photovoltaic panels if and when the client decides to take the next step with sustainability.

For Sperber, the next step personally is taking a few months off to have a baby, which she admits is not easy to schedule when you run your own very small firm. With as many projects as she has in the works, however, she'll be back in the office soon. "There's nothing like the smell of wet concrete," she says, "so I know I won't be away from the joy of making buildings for long." Ingrid Spencer

ONLINE: To view additional photos and projects by Studio ST, and to comment on this article, go to architecturalrecord.com/archrecord2/.

Work

URBANbuild students bring hope to New Orleans

Even before Hurricane Katrina decimated New Orleans, housing in the city was a problem. Tulane University's School of Architecture, under an umbrella program of the school called Tulane City Center, had been working to help since the summer of 2005, with a design-build studio called URBANbuild. "Thirty-three percent of people in Orleans Parish were living below the poverty line before Katrina," says Byron Mouton, codirector of URBANbuild. "Our program was designed with a 'macro scale,' which concentrates on research at the regional/city/neighborhood scale, and a design-build 'micro scale,' concentrating on research at the neighborhood/dwelling/material scale." According to Mouton, since the hurricane, these and other outreach programs under Tulane City Center's auspices have gained strength, as justification of their necessity has been established and funds have become available.

Thanks to that urgency, the partnership with community nonprofit agencies that specialize in affordable housing and neighborhood redevelopment, and the hard work of faculty and 12 undergraduate students, URBANbuild has completed its second design-build project, Prototype 02—a variation on the typical New Orleans canalback home, and an experiment in new building technologies. Located in a blighted area called Central City, the 1,320-square-foot house was built with panelized steel-stud walls.

"This is the second prototype house we've completed in this studio," says URBANbuild project manager Emilie Taylor. "The first one was a more cautious effort done with traditional stick framing, but because the panelized walls for 02 were made in a warehouse, we could save time during the construction process."

And because the two-semester time frame of the class meant one semester for design and one for building, more time was essential. Except for the licensed trades, the students do all the work. "Starting in January, we were putting in well over 40-hour weeks to stay on our 15-week schedule," says student Matthew Shaver. "We want to disperse the product," says Mouton.

The Prototype 02 house (above) was designed and built by students from the URBANbuild design-build studio (left).

"Our goal is to replace homes to repair neighborhoods." While the URBANbuild studio continues to modify its design to reach the best solution for mass production, a separate studio at Tulane led by local architect Coleman Coker, called Greenbuild, and producing a modular home, will also be completed this year. With that house the third in the series, the Tulane City Center program is well on its way to helping provide alternative housing solutions to the city at an affordable cost. Until the program gets the plans for the URBANbuild homes mass-produced, neighborhood housing agencies are finding buyers for the prototypes. The first has been sold for $120,000 (had the buyer qualified for low-income status, he would have been able to purchase the property for less), and the second is currently available for purchase.

With all the success of the program, Mouton admits it's still a struggle. "We're often trying to build in parts of the city that should become green-space," he says. "But the people from these areas are proud, and they're not about to give up the neighborhoods they've lived in for years. It's a larger urban issue that we're very much involved in." J.S.

ONLINE: To view additional information about URBANbuild, and to comment on this article, go to architecturalrecord.com/archrecord2/.

52 Architectural Record 08.07
THE NEW BUILT-IN SERIES FEATURING
AIR PURIFICATION

Introducing climate control that filters out food's natural gases and odors. Discover all that's fresh at subzerotrade.com or call 800-222-7820.

SUB-ZERO

CIRCLE 35 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
EFCO STOREFRONTS & ENTRANCES.
THE NATURE OF EXPRESSION DESIGN.

Anywhere you find innovative ideas, you’ll find EFCO. We’ve made a habit of surprising specifiers by offering an almost limitless supply of design options with a broad range of products. Like our System 433 Triple Set™ storefront that accommodates three glass planes up to one inch in thickness, letting you express yourself while achieving impressive energy efficiency. All while delivering quick, easy fabrication—in the shop or in the field. Discover more about how EFCO is giving you a world of choices. Contact your EFCO representative, go to efcocorp.com or call 1-800-221-4169.

WHERE WINDOWS ARE JUST THE BEGINNING.
Going the extra mile to make mass transit more personal

Critique

By William J. Mitchell

For too long, too much of the discussion about urban mobility and its relationship to sustainability has been locked into an increasingly sterile debate between proponents of public transit and advocates of the automobile. Both sides ignore some inconvenient truths.

Transit enthusiasts point out the inherent efficiencies of high-capacity public-transportation networks, but often neglect to mention that, under most practical circumstances, they offer no solution to the "last-mile" problem. They can get you to approximately where you want to go approximately when you want to get there, but rarely exactly. You still have to get from the nearest transit stop to your actual destination. It is nice to imagine that this problem could be handled by clustering high-density development within convenient walking distance of transit nodes, and sometimes it can—at least partially. But this is far from a general solution. Often, circumstances conspire against it: The distances are too great; it's impractical for the aged, small children, and the physically impaired; it can expose you to a variety of dangers; it's unattractive in rainy, snowy, very cold, or very hot weather; and it just doesn't work if you have a lot of stuff to carry.

Defenders of the private automobile emphasize that it provides mobility on demand, there are no timetables for its use, and it gets you right to your destination. As a result, people really like their cars—not only for the convenience they offer and their elimination of the "last mile," but also because they function as powerful emblems of personal freedom and social status. Furthermore, the economic, social, and cultural vibrancy of cities depends upon dense, convenient, unrestricted interconnectivity, and automobiles have become universal agents of this.

The problem with cars, which has become increasingly evident as their popularity has grown, is that the scale effects and externalities come back to bite you. When there is an extensive road network with few vehicles on it—as, for example, on the Los Angeles freeway system late at night, it's indeed astonishingly quick and easy to get around. But when the network becomes choked with traffic, congestion and delays begin to negate the automobile's advantages. Automobiles account for huge percentages of the energy consumption of cities, producing economic and geopolitical problems in the short term and a significant threat to sustainability in the long term. Tailpipe emissions turn out not only to produce local pollution, but also to contribute to global warming.

In my Smart Cities group at the MIT Media Laboratory, we have been developing a third option—a clean, compact, energy-efficient City Car that promises high levels of personal mobility at low cost, and effectively complements transit systems by, among other things, efficiently solving the "last-mile" problem. This project illustrates the growing potential of ubiquitously embedded intelligence and networking to revolutionize the ways we design and operate buildings and cities.

The crucial enabling technology of the City Car is an omnidirectional robot wheel that we have developed. This wheel contains an electric-drive motor, suspension, steering, and braking. There are no mechanical linkages connecting the robot wheels to the driver's controls. In other words, the car is fully drive-by-wire, with just an electric cable and a data cable going into each wheel, which has a simple, snap-on mechanical connection to the chassis.

Elimination of the traditional engine and drive train enables modularization of the mechanical systems and offers great flexibility in design of the body and interior. We have taken advantage of this to create small, lightweight passenger vehicles that fold and stack like shopping carts at the supermarket or luggage carts at the airport. The independent, omnidirectional wheels provide extraordinary...
maneuverability. Cars can spin on their own wheelbases instead of making U-turns, and can parallel park by slipping in sideways. Depending on context, six to eight folded and stacked City Cars can fit in one traditional parking space.

Although City Cars can work quite nicely as privately owned vehicles, they provide the greatest sustainability benefits when they are integrated into citywide, intelligently coordinated, shared-use mobility systems. The idea is to locate stacks of City Cars at major origin and destination points, such as transit stops, airports, hotels, apartment buildings, supermarkets, convenience stores, universities, hospitals, and so on. You just swipe a credit card, drive a vehicle away from the front of the stack, and return it to the rear of another stack at your final destination. From the user's perspective, it's like having valet parking everywhere.

From the operator's perspective, it's a mobility service business. Success depends on having enough stacks and vehicles to satisfy demand, while minimizing unnecessary capacity and implementing an effective strategy for tracking vehicles through GPS and redeploying them, as necessary, from points of low present demand to points of high present demand. This system enables a high vehicle-utilization rate, doesn't leave cars sitting uselessly around for most of the time—as private automobiles do—and minimizes the number of vehicles needed to provide a high level of personal mobility within an urban area.

City Cars can serve as intelligent agents, storing and providing energy to the power grid.

This isn't entirely new. The feasibility of shared-use, personal-mobility systems based on vehicle stacks in urban areas has recently been demonstrated by the Velo shared-use bicycle system in Lyon, France. Currently, this system is being extended to Paris with approximately 2,000 stacks and 20,000 bicycles.

Just as your electric toothbrush automatically recharges when you replace it in its holder, so City Cars automatically recharge when they are parked in stacks. Since they only need to travel from stack to stack, they don't need long ranges or the associated bulky, heavy, and expensive battery packs that are, unfortunately, characteristic of today's electric and hybrid cars.

Intelligent agents

When City Cars are stacked, they add storage capacity to the electric grid. They function as intelligent agents with the capacity to buy electricity from the grid when they need it and prices are low, and also to sell electricity back when they don't need it right away and prices are high. In effect, they become active, alert traders in a dynamic electricity market. This helps the power grid to even out peaks, and allows it to make more effective use of renewable but intermittent power sources such as solar and wind. A project developed by Google and Pacific Gas and Electric, using plug-in hybrid cars, has already demonstrated (on a very small scale) the idea of vehicle-to-grid power.

Large-scale implementation of this concept would be a significant step toward transforming cities into distributed, virtual power plants—an Internet-like arrangement that promises many sustainability and security advantages. Buildings would not only consume electricity, but also produce it through various combinations of solar, wind, and hydrogen-fuel-cell technologies. Vehicles, and perhaps some buildings, would provide battery storage capacity. The system would be coordinated through ubiquitously embedded intelligence and networking. Vehicles, appliances, and the mechanical and electrical systems of buildings would become intelligent economic agents, trading in energy markets with knowledge of demand and price patterns and the capacity to compute optimal buying and selling strategies.

The concept of intelligent agents operating cleverly in markets with dynamically varying prices can be extended, as well, to road space and parking space. Consider, for example, a citywide system that monitors traffic volumes in real time on a block-by-block basis, adjusts congestion road prices accordingly, and conveys this information to the GPS navigation systems of wirelessly networked City Cars. Drivers could then ask their navigation systems to find the quickest paths to destinations subject to cost constraints or the cheapest paths subject to time constraints. This produces a feedback loop controlling the allocation of road space: Vehicles adjust their routes in response to current price patterns, and price patterns adjust in response to vehicle densities.

We propose a similar approach to parking space. Using a simple sensing mechanism combined with wireless networking, City Cars can monitor the availability of parking stalls and stack space near their destinations. Based on instructions from drivers about the urgency of finding parking and the acceptability of some displacement from their destinations, City Cars might automatically bid in eBay-style auctions for available spaces and then guide drivers to them.

With our sponsor, General Motors, we have prototyped and demonstrated the feasibility of the crucial elements of the City Car system, and are currently exploring possibilities for implementing it in realistic contexts. A major exhibition on the City Car will open at the MIT Museum on September 28.

"The City Car illustrates a general principle that, I believe, will become increasingly important in architecture and urban design as the technology of ubiquitously embedded intelligence takes hold and as designers recognize and respond imaginatively to its possibilities. Vehicles, appliances (both fixed and mobile), and the various mechanical and electrical systems of buildings will all evolve into specialized, networked robots that can make decisions and respond intelligently to the varying conditions of the larger environments within which they are embedded. Resources—particularly energy and space—will be managed and allocated in far more sophisticated ways than they are today. The effects on patterns of space use, building systems and their functionality, and the prospects for long-term urban sustainability, will be profound—often in ways that are, as yet, unimagined."

ONLINE: Would City Cars work in your town? Respond at architecturalrecord.com/features/critique.
Linear Wall Luminaires
for T5 HO fluorescent lamps.
Direct or direct/indirect light distribution.

International Forum
Gold Design Award
Winner 2007

BEGA sets the standard

www.bega-us.com
805.684.0533

No. 149
Broaden the boundaries
OF YOUR CLIENTS' IMAGINATIONS.

Your clients like to think big. Do better than just keep up with them; stay one step ahead with Sunbrella® brand fabrics. Our truly unique combination of stunning colors, designs and durable fabrics perform in any condition. That means less worries for your customers and ultimately less hassles for you. It's time for imaginations to run wild. For more information, contact your Glen Raven sales representative or visit sunbrella.com.

www.sunbrella.com
Finding the magic when architects and engineers collaborate

Books

This monumental and extraordinarily ambitious look at innovation and creativity in engineering and building construction over 3,000 years represents a tour de force in the literature of engineering. Replete with 800 illustrations, the book is impeccably designed as a reference for both architects and engineers. It is both an erudite tribute to engineers who have advanced building construction from Greco-Roman times to the present and a convincing plea for increased teamwork between architects and engineers throughout the design process.

The author assumes the roles of master storyteller and adept history instructor, prefacing each chapter with a six-part time line tracking innovative engineers, new materials and technology, pedagogy, design methods, design tools, and key buildings.

Addis tells even the much-repeated saga of how Brunelleschi sold church officials on letting him build his innovative dome with freshness and immediacy. He recounts tales of more obscure engineers, like Thomas Tredgold, author of a groundbreaking 1824 text on building ventilation and heating, so readers feel like their contemporaries, looking over their shoulders. Addis makes ancient inventions, many of which are the basis for contemporary architectural achievements, seem like today’s news.

The book’s subtext, underscoring the value of ever-evolving and sophisticated cooperation between architects and engineers, is conveyed through repeated accolades to Ove Arup, who Addis feels established the “gold standard” for such cooperation during design work on the Sydney Opera house. Apart from a few too many mentions of Arup at the expense of other modern engineers, the only flaw marring this magnificent achievement is Addis’s regrettable myopia regarding building engineering achievements outside of the Western world. But there is enough for a lifetime of study between these covers.

Norman Weinstein

Peter Jones paints a nuanced portrait of Ove Arup (1895–1988), a charming yet formidable giant, whose relentless pursuit of multidisciplinary collaboration was realized in such landmarks as the Sydney Opera House, London’s Millennium Bridge and Channel Tunnel Rail Link, the Pompidou Centre in Paris, and Japan’s Kansai Airport.

Trained as a philosopher and engineer, Arup had his idealism fanned by his contact with Bohemian intellectuals, the Bauhaus, Le Corbusier, and Russian émigré architect Berthold Lubetkin, his mentor. For Arup, art was “possibly the chief hope of mankind.” But practical considerations, such as discovering that 89 percent of households in one postwar-London suburb had no bathroom, made him increasingly frustrated with architecture’s abstract theories and reforms.

Arup & Arup, which he founded in London with his cousin Arne at the outset of World War II, prospered through national defense jobs: air-raid shelters, storage tanks, bridges, deep-water jetties. Jones provides fascinating insights into wartime building and postwar planning, both afflicted by the need for speed that propagated standardization at the expense of innovation. In 1946, after dissolving Arup & Arup, Ove founded a consulting practice that would become a partnership in 1949, and a vast global enterprise today.

Throughout his life, Arup was obsessed with creating the “composite mind”—formed of specialists who could synthesize a wealth of detail about materials, processes, and standards that no one architect, engineer, or contractor could master. He believed that only the widest cooperation from the earliest stage could yield architectural harmony.

Jones devotes three chapters to the contentious Sydney Opera House saga. Resolving the structure of Jorn Utzon’s iconic roof shells propelled Arup onto a world stage, but his innovations were nearly eclipsed by the autocratic architect’s romantic notions—budget and function be damned—of visual purity.

The narrative is peppered with the outsized personalities in Arup’s wide circle—Freyssinet, Perret, Nervi, Canella, Mies, Wright—and masterfully situates them within the last century’s structural and political discourse. Ultimately, Arup’s legacy was not secured by engineering feats but by a working ethos that synthesized the highest aims of science and art and treated human beings as ends, not means. Judith Dupre

Authors Victoria Bell and Patrick Rand, both architects in Raleigh, North Carolina, argue that the “relationship between a project’s aesthetics and its materiality” is
more important than ever. After the faux veneers and antimatierality of Postmodernism, architecture is returning to its material roots—Mies’s steel, Aalto’s wood, Perret’s concrete, and on to experimental plastic and metal alloys.

In *Materials for Design*, the authors impart a thorough knowledge of glass, wood, concrete, metal, and plastic. A weighty tome, the book is a reference tool, complete with histories, production techniques, and each material’s properties, along with case studies of new work. In short, this is the textbook that many of us wish we had in architecture school.

Each chapter begins with a material primer, design considerations, production techniques, and in the case of metal, charts on weathering, corrosion, and galvanization. Sixty case studies—illustrated with good photography, readable plans, and helpful construction details—show how inventive architects have put these materials to imaginative use. The projects range from a Rural Studio chapel made of Chevrolet windshields to Hans Peter Wörndl’s plywood-panel house in Austria to Heikinen and Komenen’s Max Planck Institute in Dresden, where thermostatic resins were electrostatically bonded to aluminum cladding.

The book indicates that architectural technology is most advanced in Germany. Of the book’s three-score buildings, a quarter are in Germany, with the U.S. and Australia tied for second. Holland, Austria, Switzerland, Spain, and Japan also field exciting examples, with single entries from the Czech Republic, Canada, Ireland, Poland, Chile, and Bolivia.

There is so much information in this book that the publisher had to employ an irritantly small font. Nevertheless, *Materials for Design* is handsomely produced, and marks an otherwise auspicious start for Princeton Architectural Press’s foray into technical titles. *William Morgan*

Liquid Stone, based on a National Building Museum exhibition curated by Martin Moeller, is a serious attempt to grapple with concrete’s complicated history, rich present, and revolutionary future.

Concrete is both a material and a process; it is as old as the Romans and as new as the Modernism with which it is inextricably linked. Its surfaces can be as raw as Le Corbusier’s beton brut or in the hands of Richard Meier, as smooth as glass. Wright called concrete a “mongrel” material, Paul Rudolph likened it to mud, and Louis Kahn thought of it as “molten stone.” The negative associations of Brutalism (“Concrete,” Nikolaus Pevsner declared, “with all the shuttering marks can never be attractive”) have been forgotten, as concrete has become architecture’s most ubiquitous and varied material.

This handsome volume offers stunning color photos of work by Tadao Ando, Antoine Predock, and Steven Holl, evolutionary successors to Breuer, Saarinen, and Pei. There is Norman Foster’s breathtaking Millau Viaduct, representing the perfect union of engineering and art. Then there are the high-wire aerialists of contemporary concrete: Santiago Calatrava’s wavelike auditorium in Tenerife, which is the Sydney Opera House reborn, and Zaha Hadid’s Phaeno Science Center in Wolfsburg, Germany, which pushes concrete beyond known limits.

Beyond the dramatic images, excellent essays on concrete’s history, development, and acceptance (or lack of it) give *Liquid Stone* its real heft. The book reminds us of the heroic early years of concrete, with pioneers such as Perret, Hennebique, and Freyssinet, and it follows Modernism’s constant battle between architecture and technology. It may have been clear to Kahn that concrete really wants to be granite, but the many experimental iterations discussed in *Liquid Stone*’s closing chapter suggest a tremendously exciting future for concrete. *William Morgan*

Human beings have been building masonry structures since before recorded history. You’d think we’d have it figured out by now. But Patrick Loughran’s new book on the problems that continue to crop up in building with stone, concrete, and other types of masonry—and how to solve them or avoid them altogether—demonstrates that there is still lots of room for improvement.

Loughran takes the high road by not dwelling on who is at fault, though re-cladding (to the tune of more than 3 million euros) was done in the same stone as the original, and failed even faster the second time.

Loughran recounts such failures to help those involved in making buildings treat stone and concrete with the care it deserves. He writes about the principles of materials and their proper use, and reconstructs how failures could have been avoided. Individual chapters cover thermal cycling, impact failures, efflorescence, surface defects, discoloration, corrosion, structural failures, and leakage. Each chapter concludes with lessons learned boiled down to bite-size pieces of information.

Failed Stone is informative, entertaining, and humbling, showing us why, after thousands of years of building with masonry, we still make mistakes. *Michael J. Crosbie*
B-3944, B-3961 Convertible Towel Dispensers Waste Receptacles.

Interchangeable folded and roll-towel modules, and 12- and 18-gallon waste receptacles give you the freedom and flexibility to easily respond to changing building occupancy requirements. Also to change damaged modules without replacing the cabinet. © 2007 Bobrick Washroom Equipment, Inc. 800/553-1600, bobrick.com.
Nothing Tames Mother Nature
Like A Steel Door.

She's no lady. So when Mother Nature unleashes the worst she's got, a steel door is the best defense you've got. And an SDI steel door is proven to be impervious to her fury. SDI steel doors are manufactured and tested to withstand wind, rain, snow, tornadoes, anything she can bring.

Since 1954, the Steel Door Institute has set standards for the performance, care and use of steel doors and frames, including standards for weather resistance. The SDI Fact File is the only resource you need to ensure that the steel doors and frames you choose will keep Mother Nature out. To download the SDI Fact File, visit www.steeldoor.org.

Steel Door Institute 30200 Detroit Road, Westlake, Ohio 44145•440-899-0010 www.steeldoor.org

CIRCLE 39 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Nonprofit work experience: beneficial for all, but far too rare

Practice Matters

By Casius Pealer

Public and nonprofit practices are playing an increasing role in the professional development of young architects and yield great benefits for all concerned. The entrepreneurialism, close client contact, and quality design work achieved by those fortunate enough to obtain these positions make them desirable for traditional firms who want experienced interns. Yet the architecture profession does not support these unique training settings as thoroughly as professions such as law and medicine do, so both the interns who wish to gain this kind of experience, and those who are in need of services, go wanting.

Success stories
The Frederick P. Rose Architectural Fellowship is a national program that places architecture graduates in design positions with local nonprofit organizations for three years. “The common thread of the fellows’ work is that they often make a project where there might not be a project otherwise” said Katie Swenson, FAIA, director of the Rose Architectural Fellowship and a former fellow herself. “In many ways, a nonprofit design experience is more entrepreneurial than working in a private firm would be.”

The experience of Jamie Blosser, AIA, confirms this. Blosser spent three years as a Rose Fellow with the Ohkay Owingeh Housing Authority, a tribal housing authority located 25 miles north of Santa Fe, New Mexico. Her experience managing the development and construction of an affordable housing project, designed by Van Amburgh + Parés Architects, led to her current work as an associate and director of a Santa Fe firm, Atkin Olshin Lawson-Bell Architects.

“My role as the owner’s project manager was to write the grants, market and work with the equity investor, manage the budget, deal with the politics of getting approval, and oversee design and construction. This experience has given me a much bigger idea of our role as architects,” she says. Now when hiring people, she looks for evidence of community-based or public work, or some greater sense of personal responsibility. “I want to see if they only look at conventional models in their life or if they have a broader perspective. That reflects on their design ability and work ethic.”

Shaun Patchell, a 2005 architecture graduate, worked for one year at Florida Legal Services in Tallahassee, Florida, through a fellowship with Design Corps, a Raleigh, North Carolina–based nonprofit. His assignment was to implement a design for high-quality modular farmworker housing, even though the client who commissioned the design backed out before he arrived. “I had to find a new client to demonstrate this could work, so I started attending farm-worker meetings and making connections with farmers themselves. I was selling an existing design to a nonexistent client.” Eventually, Patchell convinced a willing farmer to build 10 units, and more may be built in the future.
Practice Matters

Patchell now works at KieranTimberlake Associates, a firm noted for its use of modular and prefabricated construction. His early experience rebidding the original farm-worker housing, and convincing potential clients to take on a new idea, will benefit him throughout his career.

Client contact
Young architects in nonprofit settings often receive a significant amount of direct client contact, which can be hard to get in early years with a large traditional firm. Louis B. Smith, AIA, is a senior architect at Commercial Builders & Architects in Charlotte, and chair of the AIA's Small Practitioners Forum. Early in his career, he learned to manage complex group dynamics while working on community development projects for a citizen's district council in Detroit. This was good experience for his current practice, doing design-build work for churches. "There is no substitute for learning how to educate a client without making them feel inferior," said Smith. "And this education process often happens in a community setting, where individual clients may be developing a project together for the first and last time."

Michael Pyatak, FAIA, of Pyatak Architects in Oakland, California, agrees with Smith, but for a different reason. He says, "Today, architectural practice requires healthy, able-bodied young people to plug in and become extensions of computers. That affects their willingness to stay in the field and to be energetic about design. Any opportunity for intern to be physically and emotionally involved with the consequences of their own actions is invaluable." Pyatak, whose practice includes significant affordable-housing work, hires interns who can demonstrate engagement in something larger than themselves. He believes they improve his firm's work environment and productivity.

Good deeds, good design
Good Deeds, Good Design is the title of a book edited by Bryan Bell, founder of Design Corps, that responds to the notion that the quality of nonprofit design work must inevitably be compromised. Max Bond, FAIA, a partner at New York's Davis Brody Bond and an architect noted for his interest in underserved communities, agrees with the premise of Bell's book. "I always thought that it is really an artificial separation. An interest in community and social issues in no way reduced my interest in design."

Bond should know. His early career mixed experiences at traditional firms with time spent working in Ghana's national construction company, as well as the Architects Renewal Committee of Harlem. He recognizes that he was afforded significant responsibility in those settings that you might expect to be typically one-year positions as judicial law clerics in federal and state courts. These clerks provide invaluable direct experience for recent graduates in a public setting, and graduates with this public experience are highly sought after by private law firms.

Supply and demand
The design fellowships described above are the two most significant opportunities for young architects looking for these kinds of opportunities, yet together they account for less than 10 positions annually for approximately 4,000 professional degree graduates. Although specific data on the total number of architecture graduates taking design positions with nonprofit or community-based organizations does not exist, Beth Miller, who directs the Collaborative of AIA Philadelphia, argues that there is far more interest on the part of young people than there are opportunities supported by the profession. "There are lots of young people who would love to take a full-time job in a nonprofit," says Miller. The Collaborative recently established a full-time position of its own for a design fellow, but can support just one fellow on a two-year rotation.

One of Miller's goals for the Collaborative is to expand the demand for full-time architectural services by community-based organizations. She does this in part by changing the perception of the role architects play. "Many organizations tend to hire design services as consultants, on a case-by-case basis," says Miller. "We try to get the ones we work with to see the value of having an architect on their board or even on their staff, to encourage a better understanding of the role of design in their community revitalization efforts."

In addition to changing the perceptions of potential clients, nonprofit experiences can be useful for interns in broadening their own views of what architects can and should do. Leslie Norvell agrees. Norvell is a landscape architect who has spent time volunteering for Miller's Community Design Collaborative and who works full-time in a local landscape-architecture firm, Lagger Raabe Skafts Landscape Architects. "It's one thing to watch someone else do something and think, 'Oh, I would do this differently.' And it's another thing to be in the hot seat yourself."

Given the concerns often expressed by architects about the transition from education to practice, there would seem to be significant potential for the profession to formalize positions for young architects to work in community settings. The fact that other professions have institutionalized this kind of practical training of recent graduates to meet community needs implies that the architecture profession may have a duty here as well as an opportunity. In the meantime, individual interns and the firms that hire them will continue to seek out and benefit from singular experiences in local nonprofits.
WALTER P. MOORE
ENGINEERING POSSIBILITIES

800.364.7300
WWW.WALTERPMOORE.COM

ENGINEERING FOR AIRPORTS, COMMERCIAL BUILDINGS, EDUCATION, ENTERTAINMENT, EXISTING STRUCTURES, GOVERNMENT BUILDINGS, HEALTHCARE, HOSPITALITY, MIXED-USE AND RETAIL, MOVEABLE STRUCTURES, PARKING STRUCTURES, PUBLIC ASSEMBLY, PUBLIC WORKS, ROADWAYS, SCIENCE AND TECHNOLOGY, SPORTS, TALL BUILDINGS AND TRANSPORTATION

CIRCLE 40 ON READER SERVICE CARD OR GO TO ARCHRECORD.COM/CONSTRUCTION.COM/PRODUCTS
STOP THE NEIGHBOR'S NOISE FROM COMING THROUGH

USE THE LOWEST COST SOUNDPROOFING SOLUTION

Multifamily living shouldn't sound like it.
QuietRock® soundproof drywall:
- Provides the lowest cost party wall to meet code
- Reduces noise 70% or more
- Hangs and finishes like standard drywall
- UL-classified.* Type X fire-rated*

For help with your project, call 800.797.8159 or visit www.QuietSolution.com/AR

*Many models. See website for details and trademark information.

CIRCLE 41 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Trade Show Review Milan • Salone del Mobile

Walking the rows of this renowned furniture fair, held this year during an uncomfortably warm week in mid-April, it's easy to spot the latest work by the industry's top product designers, many of whom are also architects. For a roundup of the accompanying Euroluce exhibition, see page 181. Rita Catinella Orrelli

1 Plastic pushers Made of clear or translucent dyed polycarbonate, Thalya, by Patrick Jouin (right), utilizes a gas injection technique to give the plastic new levels of strength while keeping it lightweight. The Mr. Impossible chair (center), by Philippe Starck with Eugeni Quitllet, is created by welding a transparent structure to a clear or colored seat shell, resulting in a surprising design effect. Toobe, the company's first floor lamp, is made of a PMMA extruded tube. Designed by Ferruccio Laviani, the lamp is “faded” through a special coloring technique, allowing light to be diffused within the cylinder. Kartell, New York City. www.kartell.it CIRCLE 200

2 Leather-mesh screen An evolution of last year's coach-hide-mesh Loom chair, the Loomy screen is designed by Franco Poli. Two elliptical metal frames hold the coach-hide mesh in place, creating a 3D, self-supporting partition. The screen creates separate areas without obstructing views and is ideal for residential, office, or retail applications. M2L Inc., New York City. www.matteograssi.it CIRCLE 201

3 Leaves and webs Among other new features, the Storage system by Piero Lissoni and Porro now offers coplanar electric leaves to make the opening movement faster and easier, while new transparent glass leaves enclosed in a thin iron profile allow for clear interior views. Also from Porro is an updated version of Synapsis, a lightweight table designed by Jean-Marie Massaud that features a web of welded metallic tubes that delicately support a wooden top. Boffi USA, New York City. www.porro.com CIRCLE 202

4 Origami folding chair The Isis folding chair folds completely flat when closed, and locks razor thin from the side. It features an easy close system, a natural wood frame, and plywood panels. Gebrüder Thonet Vienna, Tolentino, Italy. www.thonet-vienna.com CIRCLE 203

For more information, circle item numbers on Reader Service Card or go to architecturalrecord.com/products.
5 **Bent and spun** Vertigo (far left) is the first project for Moroso by Laura Aquilii and Ergjan Alberg, a partnership born in the London studio of Zaha Hadid. Inspired by M.C. Escher, the Corian table is designed to give the illusion of movement. Bent (near left), by Christophe de la Fontaine and Stefan Diez, is an addition to Moroso’s outdoor collection. The colorful tables and chairs are made of laser-cut, bent, powder-coated aluminum. Moroso USA, New York City. www.morosousa.com CIRCLE 204

6 **Decorative support** The Ribbon stool, designed by Nendo, is made from laser-cut metal strips that both decorate and support. An upholstered seat cushion is attached via a magnet. Cappellini, New York City. www.cappellini.it CIRCLE 205

7 **No static** The Prime Time storage unit helos conceal the boxes and cables that clutter entertainment units by leaving the flat-screen television as the protagonist. All the boxes are placed inside containers equipped with cable channels for connections. Pallucco, Treviso, Italy. www.pallucco.com CIRCLE 206

8 **Hanging around** The Birds on a Wire wall coat hanger was designed by the hot British design duo Edward Barber and Jay Osgerby. It’s made of an anodized-aluminum wall bar with hooks in polished die-cast aluminum or painted in polyester powder. Leif Petersen, Larkspur, Calif. www.magisdesign.com CIRCLE 207

9 **Polyethylene planters** Made of a polyethylene body and a brushed-steel base, the Missed Tree pot (center) by Jean-Marie Massaud comes in both a single body and a “branching” form. The sinuously shaped Flow pot (near left) by Zaha Hadid and Patrik Schumacher comes 6½ or 4½ high in lacquered black or white. The New Wave planter (far left), by Ross Lovegrove, has a compact, liquid form in chrome, white, or black. Serralunga, Biella, Italy. www.serralunga.com CIRCLE 208

For more information, circle item numbers on Reader Service Card or go to architecturalrecord.com/products/.
If you look real close you can see 25 years of fire-rated glazing experience reflected in it.

SCHOTT PYRAN® fire-rated glass-ceramics are an architect's best friend. PYRAN® is everything you've been looking for in fire-rated glass. It's fire-protective, impact-resistant and, aesthetically speaking, quite fetching. PYRAN® Crystal offers the highest standard of clarity, transmission and true color rendition. And PYRAN® Star is both beautiful and economical. If impact resistance is required, PYRAN® fire-rated glass-ceramics can be supplied laminated or with a surface-applied safety film. It comes in large sizes and is easily accessible through distributors, fabricators and glaziers. For new construction or retrofit, spec the glass with a loyal following among fire professionals – PYRAN®. For more information about PYRAN® fire-rated glass-ceramics, call us at 502-657-4417 or visit us at www.us.schott.com/pyran.
DIMENSIONS

PATTERNS AND PROFILES COMBINED TO CREATE UNIQUE DIMENSIONAL DESIGNS IN FLOORING

Spring 2006 marks the inception of the most innovative flooring product in the rubber market to date—Roppe Dimension’s Rubber Tile. Over a year of extensive research and development went into this product to ensure that Dimensions would meet the needs of our ever changing interior space requirements.

What began as a concept to take familiar shapes and patterns provided by other popular flooring materials and make them in a resilient rubber tile, has become the best innovation the rubber flooring market has seen in decades. The three profiles available are Random, Stripe and Crackle. All patterns are familiar in design, but now available with the added benefits that can be found only in rubber flooring products – inherent slip resistance, comfort under foot, sound deadening qualities, enhanced ROI in comparison to other flooring options and their required maintenance procedures.

WITH ROPPE THE POSSIBILITIES ARE ENDLESS. YOU DESIGN IT AND WE’LL HELP YOU MAKE IT HAPPEN.

ROPPE

Proven, Flooring, Experiences.

1-800-537-9527 www.roppe.com

CIRCLE 43 ON READER SERVICE CARD OR GO TO ARCHRECORDCONSTRUCTION.COM/PRODUCTS/
A family designs a little chapel on the prairie

By David Sokol

To raise a diaphanous, miniature chapel, Fargo, North Dakota architect Richard Moorhead raised a family first. Despite their mom's urging them to avoid the profession, Granger and Robert Moorhead cite their father for sparking their interest in design, and today the brothers, both in their thirties, are principals of their own architecture and industrial design firm, New York–based Moorhead & Moorhead.

Although father and sons are separated by half a continent and more than three decades, Granger says the Moorheads “share a core value system” that made an easy job of Mobile Chaplet, the trio's first collaboration.

In 2005, Fargo-based abstract painter Marjorie Schlossman launched the Roberts Street Chaplet Project, inviting Richard Moorhead and five other local architects to design small chapels that would be moved around the state by truck. Inspired by the Rothko Chapel in Houston, the...
To create the Mobile Chaplet, Richard, Granger, and Robert Moorhead fashioned 200 thermoplastic composite rods into a double-canopy shape, inserting them through a floating bench and into a trailer deck.

Spaces would feature Schlossman’s work and would function as public contemplation areas—none of the art is for sale, and admission is free. Moorhead, remembering that his sons had worked on a small-scale project with the New York–based non-profit public arts organization Creative Time, initiated a reunion.

The Moorheads sought inspiration from footage taken of Schlossman in her studio. “I think of it as very loose and gestural,” Granger says, describing how the artist interacts with her canvases. The team decided to express those broad, yet linear movements architecturally.

The younger men took the lead, tapping into a family of patterning concepts that Moorhead & Moorhead had been exploring. Their Filament Wound Bench, for example, features carbon fibers wrapped around a reusable core. Similarly, for the Mobile Chaplet, the designers decided to mount 200 30-foot-long, thermoplastic-composite rods into a 128-square-foot trailer bed and lace them into an abstract canopy shape.

Robert and Granger carefully plotted the rods’ connection points, arranging them in inner and outer shells, but, Robert points out, “They were allowed to have a less specific relationship at the top of the weave.” So while the core of the Chaplet comprises straightforward arcs, the rods along the edge take on more sinuous shapes. The final result—which the three men built together—not only references Schlossman’s sweeping gestures, but also assumes the form of a church nave, a Conestoga wagon, or, from a distance, a stray thundercloud.

If North Dakotans are not reflecting on the architecture’s myriad meanings, they can turn their gaze toward vistas framed by the permeable Mobile Chaplet. “The weaving has an engagement with the landscape while still feeling enclosed,” Granger explains. Stressing that link, the rods run through a bench, supporting it with stainless-steel collars that make it appear to float like a second horizon line. Or, for another experience entirely, visitors can just look at their fee: For Schlossman’s contribution, the client/artist painted an abstract landscape mural on the floor.
Roof Products, Inc.
for Unique Roof Accessories.

EQUIPMENT ACCESS CURB
Allows full access through the roof for easy removal or change-out of interior equipment. Ideal for water treatment plants, supermarkets and other facilities where cumbersome equipment is housed. After roofed in, the special structural curb is installed with reinforced, removable covers with attached lifting lugs.

INTERIOR SKYLIGHT SAFETY SCREEN
OSHA approved! Interior Safety Screen mounting, instead of exterior mounting, eliminates additional jobsite labor because the screen is built into the RPI structural curb. Saves cost, provides clean exterior look, and offers maximum security against entry. Curb can be manufactured to any bar joist spacing, which eliminates reinforcing. RPI can also supply the skylights, or, just the screens to be mounted inside existing curbs.

... and, of course, your source for

Structural Curbs
for proper support

ROOF PRODUCTS, INC.
Chattanooga, TN • Phoenix, AZ
CALL TOLL FREE 1-800-262-6669
www rpicurbs.com • e-mail: rpicurbs@comcast.net

CIRCLE 44 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Part of America's Landscape

Wausau Tile is a leader in the development of security-related products including bollards, planters and benches.

"Responding to the needs of our customers has been the guiding principle in all we do."

Ed Creske, Founder

800.388.8728
www.wausautile.com
Build a mega box...

Then stack four big boxes across the top?

We do! We’re Tindall, and that’s precast.

Neo-urbanist plans conceived Atlanta’s first urban Wal-Mart, several big-box retail stores and plentiful parking all on a tight, nine-acre metro site. Tindall’s solution? Establish Wal-Mart with a huge presence at grade level, close to well-lit parking decks...and, stacked on top, big-box retail stores served by wide, pedestrian-friendly streets with limited parking. Unprecedented 140-ft spans allow access to the loading dock on grade and accommodate impressive live loading from big-box retail above.

With cutting-edge precast technology, why let the limits of conventional framing break your budget? For creative design solutions and superior structural integrity, call Tindall Corporation today!
Great architecture is built with strong support.

Join the AIA and plug into a support network of 80,000 people who care about great design as much as you do.

The American Institute of Architects is the resource you trust for all things architecture.

Join the AIA and add your voice to the organization that speaks for the architecture profession. Your AIA membership is more than just a commitment to your career—it’s a commitment to changing the world, one building at a time.

Contact us today. www.aia.org/join
SPECIFY WITH CONFIDENCE, SPECIFY C.R. LAURENCE

INVENTORIES WORLD WIDE TO SATISFY THE LARGEST PROJECTS

Stacking and Folding Systems

Sliding Interior Systems

UNSURPASSED QUALITY AND SELECTION

C.R. LAURENCE COMPANY
Architectural Products Manufacturing Division
Phone: (800) 421-6144 Ext. 7700 • Fax: (800) 587-7501

crlaurence.com
Bridges that seem to float on air illustrate feats of architecture and engineering

By Suzanne Stephens

It is more and more common to find architects collaborating with engineers to produce elegant and exciting means of traversing water by foot, bicycle, or car [Record, June 2004, page 247]. Sometimes, of course, the collaboration occurs within the same person, as Santiago Calatrava, trained as both an architect and an engineer, has demonstrated so arrestingly with the design of more than two dozen bridges over the past 20 years, not including three nearing completion in Reggia nell’Emilia, Italy, and five others under way. And, as seen in the early-20th-century example of Robert Maillart, engineers don’t always need architects to create sinuous or gossamerlike bridges. So it is not surprising that engineer Cecil Balmond and his Advanced Geometry Unit at Arup decided to be the “architect” for a footbridge in Coimbra, Portugal, working with Portuguese engineer António Adão da Fonseca of AFAsociados.

Nevertheless, one astonishing bridge that bears the imprimatur of an architect is Millau Viaduct over the River Tarn in southern France, where Foster + Partners worked with bridge engineer Michel Virlogeux and others. The delicate-looking cable-stayed structure, a mile and a half long, was completed at the end of 2004 by the architect in association with a group of engineers and engineering consultants for Eiffage, which built it, and the Compagnie Eiffage du Viaduc de Millau (CEVM), which owns it. This bridge has already become an iconic landmark—and it looks as if it would be great fun to cross.
Millau Viaduct, Millau, France, Foster + Partners, et al

The competition-winning cable-stayed bridge owned by Compagnie Eiffage du Viaduc du Millau (CEVM) is the tallest automobile bridge in the world. Its seven concrete piers range from 256 feet to 800 feet in height, and steel pylons above the steel-box road bed add another 318 feet. Foster + Partners worked with advisers to CEVM, plus three Paris-based firms—Europe Etude Gécit, Thales Group, and Société d'Etudes R. Foucault et Associés—on this 1½-mile-long bridge, where 11 pairs of cables support each of eight spans.
In designing a pedestrian and bicycling bridge outside Amsterdam in 2006, the London-based architects Wilkinson Eyre worked in association with Arup's structural engineers and Grontmij (specialists in concrete work). The Nesciobrug (Nescio Bridge), the first suspension bridge in the Netherlands, spans 535 feet (2,559 feet including approaches). It links the new suburb of IJburg with Amsterdam.

In order to keep the bridge from being too assertive in the landscape, the architects and engineers decided on the monocable, self-anchored suspension structure that gracefully curves and splits as it crosses the Rijn Kanaal. The two forms of traffic are guided along diverging paths, 11 feet wide for cyclists, and 7 feet for pedestrians. A curved, steel box girder provides the deck for the bridge, which allows a clearance of 30% feet beneath it for commercial shipping. Each of the separate decks continues beyond the masts, with back-stay cables supporting them.
A masterpiece begins with the selection of the first building block.

Italy produces the world's largest range of styles, colors, designs and technological innovations in ceramic tile.

Before your next residential or commercial project, be sure to visit www.italiantiles.com to see the latest trends and find your closest source.

For more information, please contact:

Italian Trade Commission – Ceramic Tile Department – 33 East 67th Street – New York, NY 10021-5949 – ph (212) 980-1500 – newyork@newyork.ice.it

Ceramic Tiles of Italy, promoted by Confindustria Ceramica, is a registered trademark of Edi.Cer. S.p.a.,

the organizer of CERASIE, International Exhibition of Ceramic Tile and Bathroom Furnishings – Bologna, Italy, October 2-6, 2007 – www.cersaie.it

CERAMIC TILES OF ITALY. THE ART OF LIVING.
Footbridge, Coimbra, Portugal, Cecil Balmond and António Adão da Fonseca

In designing a pedestrian bridge for the Rio Mondego near the town of Coimbra in central Portugal, the engineer Cecil Balmond of Arup's Advanced Geometry Unit in London acted as the architect, working with Portuguese engineer António Adão da Fonseca and AFAsociados. Named the Pedro and Inês Bridge, after an ill-fated romance of yore, the 266-foot-long bridge does not appear to meet in the middle. Balmond and Adão da Fonseca devised a solution where two cantilevered spans push against one another as they transfer opposing loads onto the arched piers. A central parabolic arch and two lateral arches of steel with reinforced-concrete piers and abutments form the structure, and wood surfaces the concrete and metal deck. While the basic form is reminiscent of Maillart's Rhine River Bridge at Tavanasa of 1905, this 2007 version, with its jog, definitely has a new twist. To top it off, Balmond designed a jagged balustrade featuring colored-glass facets in a steel framework.
Solarban® z50 proves you don’t have to be green to be green.

New Solarban z50 solar control glass is a stylish, steely blue-gray glass that blocks up to 70% of total solar energy. That gives it a light to solar heat gain (LSG) ratio that’s up to 30% better than that of competitive products. And that makes Solarban z50 a worthy addition to the Solarban family of solar control glass products – and a colorful step forward for sustainable design. For your free energy analysis white paper and glass sample, or to learn more about EcoLogical Building Solutions from PPG, call the PPG IdeaScapes hotline: 1-888-PPG-IDEA. Or visit www.ppgideascapes.com.
River Usk Footbridge, Newport City, South Wales, Atkins/Grimshaw/Alfred McAlpine

A competition-winning scheme for the design of a footbridge in South Wales employs a four-masted steel structure evocative of the sailing ships that long ago docked at the trading wharves of Newport City. The boatlike design, completed in 2006, resulted from the collaboration of a team where Grimshaw acted as a subconsultant to Atkins civil engineers, a firm employed by the contractor, Alfred McAlpine. The masts, which are paired on the west bank of the River Usk, support the 476-foot-long bridge deck, 16 feet wide, for pedestrians and bicyclists. The shape generates a dynamic presence on the river owing to the length of the masts: The forward mast extends 262 feet; the back mast, 230 feet. Cables, 5 inches in diameter and 260 feet long, transfer the deck’s loads to the ground and act as back stays for the masts, while two precast-concrete abutments connect the bridge on the east and west banks of the River Usk.
visual perfection
seeing as if there were no boundaries of glass... while basking in glass protection...

Today's design solution for 99.9% ultraviolet ray protection.* Helps prevent fading, while providing heat and glare reduction—the ultimate in client comfort.

*The Skin Cancer Foundation recommends VISTA® as a device for the protection of skin.

VISTA® and UVShield® are registered trademarks of CPFILMs Inc., Martinsville, Virginia © 2007 CPFILMs Inc., a unit of SOLUTIA.
The nature of certain delicate fabrics and dyes will lead to premature fading regardless of the application of any window film or protective treatment.
In 2001, the AIA Board of Directors established a three-year plan to rebuild the organization's net assets. From the very beginning, through everyone's hard work and focus, the AIA has exceeded its targets year after year, returning the Institute more quickly than anticipated to sound financial health and maintaining momentum while developing new and effective ways to meet our strategic goals:

- Increase member value
- Be the authoritative source
- Serve as the credible voice
- Optimize organizational performance

Your dues at work

- The AIA is part of a coalition attempting to repeal a tax provision that would require the government to withhold 3 percent of all payments on government contracts, including design.
- Current TV, a global online television network, produced an eight-minute segment, titled "Green by Design," about the AIA Committee on the Environment's Top Ten Green Projects.
- A beta version of Soloso, the new collaborative knowledge tool under development, debuted at convention to get member feedback. Official launch is scheduled for fall 2007.
- Registration was more than 21,000 for the 2007 AIA National Convention in San Antonio which themed all workshops, seminars, and general sessions around sustainable design.
- Two microsites launched on the Web to educate prospective clients on working with an architect. See http://howdesignworks.aia.org.
- The AIA layers on Google Earth debuted in San Antonio, introducing large new audiences to an understanding of what architects do. One layer focuses on America's Favorite Architecture, and a second on Blueprint for America initiatives around the country.

We thank our members for their faith in the Institute and active participation in moving the profession forward to benefit your clients, communities, and the built environment. Look for more innovation and progress in the days and months ahead, but be assured that we continue to watch our fiscal performance as we act as stewards of our members' dues.

Christine W. McEntee
AIA Executive Vice President and Chief Executive Officer
For information on our complete line of architectural concrete masonry, color samples, or to locate a dealer near you, please call 800-234-8970.

www.edillon.com

CIRCLE 51 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
TOTALFlash Cavity-Wall Drainage System

Slashes Labor Costs Improves Protection.

TOTALFlash by Mortar Net USA is a historic breakthrough for controlling moisture-damage and mold-growth in masonry cavity walls. All the "best practices" of today's moisture-control have been ingeniously factory-assembled onto handy, pre-cut panels of flexible flashing!

There's no waiting for multiple deliveries, no field-cutting of flashing-rolls, no time spent installing separate components! That's why TOTALFlash installs twice as fast as common alternatives, slashing time & labor by 50% (or more)! And it's available in sizes for easy use in Renovation/Remediation!

1. All key components arrive pre-assembled onto 5-ft. Panels of Pre-Cut Flexible Flashing.
2. Built-In Termination Bar allows one-man installation.
3. Built-In Vertical Edge-Dam sends moisture down to weep system.
4. Built-In No-Clog Drainage Matte for unobstructed drainage to Weep Tabs.
5. Built-In No-Clog Weep Tabs deliver moisture outside the building.
6. Built-In Stainless Steel Drip-Edge releases moisture away from building.
7. Clearly Specified Lap-Joints enforce complete coverage.
 ◆ Screws & Adhesive included.
 ◆ Pre-formed Corner Boots, Stainless Steel Corners, & End Dams available, for quick installation and foolproof corners.

TOTALFLASH CAVITY-WALL DRAINAGE SYSTEM
by Mortar Net USA, Ltd.

800-664-6638
www.MortarNet.com

CIRCLE 52 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
The Strange, New World for the Engineer’s Expanded Role

The "spectacular" architecture routinely featured in RECORD relies more than ever on the ingenuity, creativity, and yes, patience of the contemporary engineer. This species of professional, as much a creation of the modern era as anything else, now occupies a central place at the beginning of the design process, forever transforming how architecture relates to our cities, culture, and ourselves.

In this issue, we present a brief history of integrated design, focusing on the rise of the structural engineer. As part of that story, we feature an atlas of great mechanical and structural engineers—old and new—who have contributed substantially to architecture, either through built work, a philosophy of design, or a firm’s legacy, as well as through collaboration. We also offer a collection of recent bridges illustrating a more traditional role of the engineer as designer.

Our August projects—San Francisco’s Federal Building; Bangkok’s airport; Lufthansa’s headquarters in Frankfurt, Germany; and Portland, Oregon’s aerial tram—all embody the principles of the new engineer, one who is willing to take risks to engage the realities of the changing environment and capable of thrusting new forms and technology into our world. We then offer an overview of recent skyscraper projects, and close with an exploration of the designs for New York City’s newest subway line. Like the interconnected structural bubble frame of PTW Architects’ and Arup’s Watercube for the Beijing Olympics (above), we imagine the expanded role of the engineer will continue to supply architecture with limitless opportunity. Russell Fortmeyer
By Nina Rappaport

A shift in the architecture profession, already entrenched with issues of control and authorship, affords the engineer an expanded role during initial project design discussions, not just as consultants after the fact. Structural engineers like Chris Wise—formerly of Arup, now at Expedition Engineering—are literally drawing at the table, which is how he explains his collaboration at Arup with Norman Foster’s office on London’s Millennium Bridge. Engineers are featured prominently in conceptual design discussions, and they are even once again writing books on their philosophy of structures. The blurring of professional boundaries between architect and engineer is making the design process more flexible and malleable, and thus experimental, providing a new space for the structural engineer to merge the overemphasized divide between math, nature, technology, and design.

In part, this shift is due to a renewed interest in structures by contemporary architects, such as the Office for Metropolitan Architecture with Cecil Balmond, Michael Maltzan and Steven Holl with Guy Nordenson, Toyo Ito and Arata Isozaki with Mutsuro Sasaki, Coop Himmelb(l)au with Bollinger & Grohmann, to name just a few. This paradigm has emerged through intense collaboration, open design dialogue, and radical advances in digital design and fabrication technology, resulting in new arrangements of the “bones” of a building, the design of occupiable structural elements, new structural “skins” to envelop massive spaces, form-finding, and environmental integration. Structural designs that embrace a new holistic integration have also been inspired by the internal structures of nature, as found in things such as crystals, coral, and bones. Engineering falls between science and art, intuition and empiricism and is thus often not accepted in its full creative potential. Creativity results from intuitive interpretation of first principles of physics, mathematics, and code, which, while abstract, can result in new, nonstandard techniques in the physical world. Structure, so often discussed in terms of economy and efficiency, is also about aesthetics.

In considering the rise of the contemporary engineer, what comes to light are three important moments of design input in the past century: the early Modern era; the 1950s; and again today, where geometry, structures in nature, and collaboration all play a role in shaping new spaces as described in this rather brief history. During the early Modern movement, the engineer came into the foreground, with or without architects, often patenting structural steel and concrete inventions for large spans, such as those by Owen Williams for Boots, Giacomo Matte-Trucco for Fiat, or the shell structures of Pier Luigi Nervi. Robert Maillart became a de facto Modern designer with his minimal bridge structures in Switzerland, as did the anonymous American engineers of grain silos admired by Erich Mendelsohn and Le Corbusier. The late London structural engineer Ove Arup started his career designing projects in concrete with Tecton Architects, such as London Zoo’s Penguin Pool (1934), which Arup designed with engineer Felix Samuely.

Midcentury masters

Those Modern structural design engineers engaged the next generation, who by the 1950s and 1960s inserted themselves into larger consultancy roles for new building typologies, such as massive skyscraper projects. For example, Frederick Severud, with architect Matthew Nowicki, made possible the design of the suspended roof of the Raleigh Arena in North Carolina (1952). With its unique saddle shape, it fast became a pilgrimage stop for engineers Frank Newby, Ted Happold, and Frei Otto on their first visits to the U.S. in the early 1950s. Severud’s ability to free structure to express the potentials of nonlinear space, breaking away from the rigid grid, also inspired Eero Saarinen’s concrete shell for Ingalls Rink in New Haven (1956–59).

Ove Arup was also outspoken in his dedication to structure as a force for design, articulating in his landmark 1970 “Key Speech” concepts of “total design” and “total architecture.” For Arup, these two points described a necessary and productive synthesis in the collaboration between architects and engineers, between design and construction. Although he died in 1989, his influence has been broad, not only through the 9,000 employees who constitute his present firm, but in the spawning of other firms, such as the late Ted Happold’s Buro Happold, the late Peter Rice’s RFR, Jane Wernick’s firm, Chris Wise’s Expedition Engineering, and Guy Nordenson, who started in Arup’s New York office and then founded his own practice. While Arup has had lasting influence for the development of the multidisciplinary practice—structural, mechanical, electrical, plumbing, acoustics, lighting, and so on—Arup, the man, was never alone in his pursuit of structural innovation. The work of Jack Zunz on Jern Utzon’s Sydney Opera House in Australia (1957–73), which expanded the potential of shell structures, and Rice’s work on the “high-tech” Centre Pompidou in Paris (1971–76), with Richard Rogers and Renzo Piano, both represent signatories for the firm at the time, as more individual engineers developed collaborative relationships with specific architects. Since 2005, engineers at Arup have been completing a precise 3D digital model of the Sydney Opera House for future construction projects and analysis.

In Germany, Frei Otto’s collaborative investigations of lightweight structures took shape with the unique topographic roof surface of the Munich Olympic Park (1972), designed by Behnisch Architekten (then called Benisch + Partner), with engineers Leonhardt, Andrä and

Nina Rappaport is a writer, curator, and educator, as well as publications director at the Yale School of Architecture. Her forthcoming book, Support and Resist: Structural Engineers and Design Innovation, is due this fall from The Monacelli Press.
2. Structural study model for the Munich Olympic Stadium (1972), Behnisch Architekten, with Frei Otto.
3, 4. Dorton (Raleigh) Arena (1952), North Carolina, Matthew Nowicki, with Frederick Severud.
EDITOR'S NOTE: Modern consulting engineers and their ideas have spawned countless new practices throughout the world, resulting in some of the most inspiring projects of our time. We admit we have left out a few greats in our overview, but we see this as only a beginning to understanding the increasingly interconnected world of architectural engineering.
Partners. Engineers Jörg Schlaich and Rudolph Bergermann, who later formed their own influential practice, were also part of the team. The project epitomizes Otto's ideas from his tensile structures of the 1960s, which used the principles of economy in large-span, lightweight membranes. This experimentation relied on Otto's position as the founder of the Lightweight Structures Institute at the University of Stuttgart, where he could use numerous modeling techniques—such as soap film structures, hanging chain models, and mechanical models—in which the radically simple processes resulted in form. At the institute, the baton was passed to Jörg Schlaich, who then taught Werner Sobek, the current director of the renamed Institute for Lightweight Structures and Conceptual Design. Otto's embrace of flexible and lightweight structures forms a contrast to monumental and weighty architecture.

Enabling collaborations

Today, shared Building Information Models (BIM), rather than just physical models, as with Otto's early projects, allow for feedback and integration between all the building professions, including that of the construction team. Adams Kara Taylor (AKT), a London-based structural and civil engineering firm of 40 people, will engage an architect's ideas for a project design, but, as engineer Hanif Kara says, they "do not pretend to be the architect." Key to the firm is teamwork and a constant dialogue with the architect. An in-house mathematics think tank with computational specialists assists teams, and it is common to see five engineers from five countries hunched over one computer as they jointly solve problems. AKT's nonhierarchical studio encourages creative thinking and innovation, but not at the cost of technical competence, achieving what Kara calls "great engineering rather than bad architecture." For its work on the Peckham Library in London (2000), with Alsop & Stormer Architects, the concrete-filled steel columns angle to support a cantilevered upper volume. Appearing like an upside down L-shaped volume, the building's structure freed Alsop from traditional constraints, opening the library's base to allow for public space. Kara, who worked for Anthony Hunt and also teaches at the Architectural Association in London, engineered Zaha Hadid's Phaeno Science Center in Germany (2005), where structural redundancy was eliminated so that the walls and concrete slab could combine as a continuous shell to achieve the fluid space the architect desired. Currently, Kara is collaborating on the design with Foreign Office Architects (FOA) of the John Lewis department store in Leicester, England (2007), that will also include retail and a cinema. AKT's proposed structural design enables FOA to foreground an intricate lacy glass facade by engineering large spans for an atrium, an auditorium, and loading dock areas, in addition to glass walkways through the atrium.

Before leaving to form her own firm, at Arup Jane Wernick engineered Hadid's curvilinear concrete Ski Jump in Bergisel in Innsbruck (2002) and the competition phase of Angell/Graham/Penningher/Scholl's Portland Aerial Tram (see page 126) in Oregon. Taking into account what Peter Rice taught her when she was at Arup, to "let the architects in on their secrets," Wernick says she always explains her process at the outset of a project. Among her more notable achievements at Arup, her structural challenge for Marks Barfield Architects' London Eye ferris wheel (1999) was to design a 500-foot-high structure that moves, but would be stable and strong. Not surprisingly, she found the bicycle wheel, as a tensile structure, to be the most economical form. She resolved the structure with landside pylons supporting the wheel at the hub, with the spindle cantilevering out to allow the wheel to be suspended over the Thames River. Although unusual for historic London, the structural spectacle of the Eye has become
one of the city's most exquisite examples of its engineering eminence.

Many times, the collaboration between architect and engineer results in buildings where intensified structural patterns emerge from a mathematical or nature-derived basis that is enabled by digital tools to become a kind of "deep decoration." Tristram Carfrae, of Arup's Melbourne office, employed the concept of bubble structures for the Watercube National Aquatics Center for the 2008 Beijing Olympics, designed by PTW Architects of Australia. The center's five pools are enclosed in a structure filled in with ETFE foil cushions—similar to those at Grimshaw Architects' Eden Project in England (2001)—that both physically and literally represents a swimming pool. Rather than adopt Frei Otto's soap bubble investigations from the Munich stadium, Arup explored the connectivity of cellular arrays to combine the surface pattern with the internal structure of a ductile space frame that supports the long-span roof structure. The varied ETFE hexagonal elements resolve both the environmental and structural design in a nonlinear, unified form.

Material focus

Many engineers are interested in the structure of materials, as well as material-as-structure. The Modernist fascination with glass, in its duality of fragility and strength, in addition to its varying qualities of transparency and translucency, has played a notable part in many engineers' oeuvre. This can be found in the early work of Peter Rice's bracketed glass wall systems for the Grand Serres of the Science and Technology Museum in Paris's Parc de la Villette, with architects Adrien Fainsilber & Associés (1986), to structural glass systems of such contemporary practices as Dewhurst Macfarlane, Schlaich Bergermann und Partner, and Werner Sobek. In June, Rice's Paris-based firm, RFR, completed the structure for a 460-foot-long toroidal transparent volume to expand the Strasbourg TGV train station, designed by the architect Jean-Marie Duthilleul for the French National Railways. Relying on a slender prestressed-steel structure, the use of cold-formed curved and laminated glass minimizes its presence at the historic station. Working with Seele glass manufacturers, and incorporating solar gain analysis from Stuttgart-based climate engineers Transsolar, the project combines design, structure, and climate engineering in a truly holistic way while resulting in a bubble form at the station. Bollinger & Grohmann, working with Mitsuro Sasaki and Transsolar, devised a transparent sustainable office building in a Minimalist structure for SANAAS's Novartis project in Basel, Switzerland (2007). The extremely thin reinforced-concrete floor slabs supported by structural walls achieved the desired open floor spans, as well as transparency through the rectilinear building. With design assistance from the New York–based facade consultants Front, the translucent building appears as a thinly veiled glass box.

New York–based engineer Guy Nordenson, working with Los Angeles architect Michael Maltzan, designed the Ministructure No. 16 in Jinhua City, China, a 1,300-square-foot pavilion in a historic garden. Beginning the design with a concrete structure, the team switched to steel because of the high water table. A hybrid Veirendeel steel structure, accompanied by smaller ladder trusses, resulted in a double-perforated facade that creates an unexpected moiré pattern on the building's skin.

Algorithms and patterns of structure

Structural engineers have been doing analysis in 3D for decades, but now they share those models with architects as digital versions of construction drawings. These models now increasingly rely on complex computer-code-based geometrical relationships that require engineers to be as much programmers as designers. Much of this work has resulted from firms designing their own software, such as Happold's Tensyl for tensile structures or Bollinger & Grohmann's program for trusses, though Autodesk's Revit and Bentley's Generative Components have revolutionized design for many engineers.

Algorithmic design processes resulted in the structural maneuvers of Bollinger & Grohmann's proposed tesselations for Dominique Perrault's Mariinsky Theatre II in St. Petersburg, Russia (2008). The Mariinsky's structure is defined by a system of connected steel pyramids, like an asymmetric geodesic dome, filled in with cross ribs that radiate out to support a metal-mesh infill. The shell wrapping the theaters appears like a geode, where structure and skin are combined into one system, similar in theory to the deep decoration found on Arup's Watercube. Cecil Balmond, one of Arup's directors, works experimentally with algorithms with architects such as Rem Koolhaas, Daniel Libeskind, and Toyo Ito. Balmond has written a book, Informal (2002), and his projects are currently on view in The Frontiers of Architecture I exhibition at the Louisiana Museum of Contemporary Art, in Denmark, through October. The 2002 Serpentine Pavilion in London expresses many of his concepts most explicitly. Designed with Toyo Ito, the structure was based on twisted squares arranged in circular patterns, connected with their primary lines of force. The overall patterning of the shell, in crossing lines and planes, makes the skin and structure one—more similar in concept to a traditional load-bearing wall than to systems of separate structure and infill. The pavilion is a physical manifestation of an algorithm: Pattern and structure are integrated and become a form. As Balmond says, "The design started with a simple line that was repeated, releasing architecture from structure, rather than trapping architecture through the structure." Diagonally gridded exterior-structural-skin systems have also become emblematic of his use of structure as pattern, as is the case for the diaphragm structural skin of OMA's CCTV Tower, under construction in Beijing.

Nonlinear shaping of structure is dominant in Mitsuro Sasaki's work in strong collaborations with Toyo Ito and Arata Isozaki, as he believes there is a creative process involved in developing hypotheses regarding a structure's shape, system, materials, and dimensions. Focusing on form-finding and shape design in curvilinear and organic forms, Sasaki bases designs on principles of self-organization in nature. Using his 3D Extended Evolutionary Structure Optimization (ESO) method, he defines his forms within a collaborative digital model to result in optimized and rational structures. For Ito's Crematorium, in Kakamigahara Gifu, Japan (2006), the curvilinear reinforced-concrete roof shell, only 7.8 inches thick, was evaluated using Sensitivity Analysis, a systematized method for analyzing curved surfaces to determine an efficient structural shape. As he describes in his 2006 book, Flux Structure, "By means of the repetitive nonlinear analysis procedure it becomes possible to organically comprehend the evolution of structural form in the overall structure from the relationships between its shape and mechanical behavior."

These perspectives in turn shape the future of complex space, as well as suggest the realization of new paradigms for collaboration between design, structure, and environment. The full integration of structural engineering into the process of architecture does not guarantee good architecture or revolutionary space and forms, but enables their potential to exist. Now more than ever, engineers are embracing the natural world and poetically exploiting its logic to realize architecture's possibilities. As Ove Arup said in his "Key Speech," the aims of his firm are not "grasped arbitrarily out of the sky or willfully imposed, they are natural and obvious."
At 240 feet tall, the San Francisco Federal Building can be seen from many parts of the city (opposite). The perforated-stainless-steel scrim that shades its southeast facade pulls away from the base of the tower and is at once diaphanous veil and sharp-edged protective shell.
Morphosis and Arup engineers create
dynamic form that follows function for the
U.S. FEDERAL BUILDING in San Francisco

By Joann Gonchar, AIA

The southeast facade of the U.S. Federal Building in San Francisco is covered with a perforated-stainless-steel scrim that seems at once to be a diaphanous veil and a sharp-edged protective shell. And the dual nature of this 18-story office tower seems just right for its rapidly changing but still gritty environs, where pawn shops sit cheek by jowl with luxury condos. Completed in March, the 240-foot-tall tower dominates the mostly low-rise South of Market skyline and is reportedly snarling traffic on nearby Interstate 80 as drivers slow down to take a look. But its height and gussy exterior are not the only reasons the Federal Building is getting attention. It also has a set of ambitious environmental goals.

The designers and the owner, the General Services Administration (GSA), say that the tower, which relies on natural ventilation to cool its upper 13 floors, will consume 33 percent less power than an office building designed to comply with California's stringent energy code, Title 24. The majority of the work spaces are largely illuminated by daylight, a strategy that is expected to reduce energy use associated with lighting by about 26 percent over a standard office building. In addition, replacement of half of the Portland cement in the exposed-reinforced-concrete structure with blast furnace slag—a by-product of steelmaking—prevented release of approximately 5,000 tons of carbon dioxide into the atmosphere.

The tower is the product of a highly collaborative design process, and its form, structure, and orientation are fully integrated to achieve these efficiency targets. "The building is defined by performance," says Thom Mayne, FAIA, principal of Morphosis, the project's lead design architect. Of course, there are elements of the building that are more about expression than function, such as its roof, where the stainless-steel scrim angles up and folds over like a rakish cap. "At the top, the scrim is pure form," says Mayne. "It's a balance of poetry and pragmatics."

Mayne's "pragmatic" concerns are not limited to energy and resource conservation. The tower is the centerpiece of a 605,000-square-foot, $144 million, Morphosis-designed complex, which has a significant urban and civic agenda. In addition to the tower, it has a four-story barlike office annex, a freestanding café, and a day-care center. These facilities, all mechanically ventilated and steel framed, define a plaza at the corner of Seventh and Mission Streets. This plaza is much more than an empty outdoor space offered as compensation for the tower's height. It provides breathing room for the Beaux-Arts James R. Browning U.S. Courthouse across the street. It also eases public access to features of the program, such as the café, which might otherwise have been buried within the tower.

Although the day-care center is accessed through the tower lobby, enrollment is nevertheless open to neighborhood children. The architect has given this facility a strong plaza presence with the shading scrim—which pulls away from the tower near its base—unfolding to shelter the semi-submerged building like an irregularly crimped accordion.

Similarly, the tower's three-story-tall sky garden, which provides spectacular views of the city and San Francisco Bay, is open to the public. It is expressed as a huge void in the southeast facade, visible even at night, when it is illuminated by a neon installation by James Turrell. "These moves are intended to break down the distance between the community and the federal government," explains Tim Christ, Morphosis project manager.

Project: United States Federal Building, San Francisco
Lead design architect: Morphosis—Thom Mayne, FAIA, principal; Tim Christ, project manager; Brandon Welling, project architect
Executive architect: SmithGroup—Carl Roehling, FAIA, project executive; Carl Christiansen, AIA, principal in charge; William Loftis, AIA, project manager; Jon Gherga, project architect
Consultants: Arup (structural, m/e/p); Horton Lees Brogden (lighting)
General contractor: Dick Corporation/Morganti Group
In addition to the tower, a four-story barlike office annex, a freestanding café, and a semisubmerged day-care center define the Federal Building's plaza (opposite) and provide breathing room for a turn-of-the-last-century courthouse across the street. In a gesture that the architect refers to as "pure form," the stainless-steel scrim that shades the southeast facade folds over the roof like a rakish cap (below). The tower's entrance is marked by its emphatic structure instead of a set of grand stairs or other monumental features often associated with government buildings.

1. Tower lobby
2. Conference center auditorium
3. Day care
4. Café
5. Conference center lobby
6. Sky garden
Other spaces within the building offer opportunities for lingering and chance meetings. For example, the 90-foot-tall ground floor lobby is more than a place to scurry through to reach the elevator. Here, stairs transform into informal seating, and daylight from above washes over polished concrete floors and faceted walls of reinforced-fiber-cement panels. The environment is one that Mayne describes as "raw simplicity" without being austere. On the upper floors, the three-story lobbies that are a by-product of the skip-stop elevator system, were also conceived as social spaces. They are adorned with murals by Ed Ruscha and include inviting stairs with landings that project from the facade and provide views of the city.

Many of the social and urban redevelopment goals were a component of the program since even before Congress approved funding for the project in 1989. However, the energy conservation goals did not emerge until about a decade later, when Mayne was selected as part of the GSA's Design Excellence Program. The owner organized a meeting with representatives of the 1,500 federal employees from the six tenant agencies to better understand their requirements. What emerged was a desire for work spaces with access to daylight and views and for features such as operable windows that would offer occupants individual control over their environments, says Maria Ciprazo, AIA, GSA project executive.
The sloping structure and the faceted walls of the tower's lobby frame a view of an adjacent Beaux-Arts federal courthouse built in 1905.
From the entry (below), with its angular maple-veneer walls and ceilings, visitors and tenants enter the lobby where daylight from above is supplemented by light from projecting lanterns (right).

Although several years in advance of the GSA’s adoption of a requirement for LEED certification, architect and client realized that the occupants’ vision for the building was compatible with one that would be energy- and resource-efficient, especially if they could take advantage of San Francisco’s benign climate to render air-conditioning unnecessary. “We wanted to push the building as far as possible, but we did not want to spend public funds cavalierly,” says Ciprano. So to test the feasibility of a naturally ventilated office tower, the GSA turned to scientists from Lawrence Berkeley National Laboratory to undertake weather-data analysis, wind-speed studies, and airflow modeling.

The building that evolved from this research and from early and intense collaboration with mechanical and structural engineers, lighting designers, and other consultants, was a tall and narrow structure with a 340-foot-long, and only 65-foot-wide, floor plate—slender enough to allow access to daylight and views from almost all of the work spaces. The typical floor is organized with workstations at the perimeter and meeting rooms and private offices along the spine. These glass-enclosed “cabins” are mechanically cooled, as required by code. However, their roofs are pulled away from the undersurface of the slab, so as not to obstruct the flow of air as breezes enter through openings on the tower’s windward elevation and are vented through the opposite facade. The city’s zoning regulations restrict the height of buildings to 120 feet in the Market Street corridor, to the northwest, ensuring that this flow of air will remain unobstructed.

The openings in the two long facades, some of which the individual occupants control, and some of which the building automation system (BAS) controls, include operable windows as well as trickle vents located near the floor. The vents let in small quantities of fresh air warmed during chilly weather by a fin-tube convector located directly above them.

To protect the facades from excessive solar heat gain, the designers clad them in high-performance window wall. On the southeast, the perforated-stainless-steel scrim, the building’s chief expressive element, does double duty as a shading device. On the northwest facade, frosted-glass fins break the sun’s path and provide protection from glare.

The Federal Building’s exposed-concrete structure and the thermal mass it provides are critical components of the cooling strategy. At night, when warm weather is expected the next day, the building’s structure is “charged” for about 8 to 10 hours, explains Erin McConahey, Arup associate principal and project mechanical engineer. The BAS opens the facades’ operable apertures and then closes them once the concrete has cooled sufficiently. Then, during the day, heat generated by occupants,
The Federal Building's perforated-stainless-steel scrim is made up of multiple planar elements of varying geometry (top left and right). The shading device and its substructure (lower left) were designed in three dimensions. The resulting digital model was used to coordinate fabrication and installation.

1. Plaza
2. Tower lobby
3. Elevator lobby
4. Storage and m/e/p
5. Annex
6. Parking/loading access
7. Café
8. Day care
9. Office space
The designers protected the tower's facades from heat gain with a shading scrim on the southeast elevation and frosted-glass fins on the northwest. Some of the openings in these window walls are controlled by the occupants and some by the building automation system.

A tower shaped by performance objectives and design process

The form, structure, and orientation of the Federal Building office tower are the product of weather-data analysis, wind-speed studies, and air-flow modeling, and an integrated design process. Office floors are long and narrow to provide views and promote daylighting. The slender floor plate permits breezes to enter through openings on the tower's windward elevation and allows venting through the opposite facade. The building's exposed-concrete slabs are supported by an upturned beam system and have a wave profile in section. The configuration maximizes structural efficiency while increasing surface area, enhancing the slab's ability to absorb heat generated by people, computers, and lights.

Open workstations line the perimeter of the office floors while glass-enclosed meeting rooms and office "cabins" occupy the building's spine (right).

Three-story lobbies (right) are a by-product of the skip-stop elevator system first pioneered by Le Corbusier. Projecting stair landings afford views of the city (opposite, bottom).
The frosted-glass fins on the northwest elevation (this page) are separated from the window wall with a catwalk. Zoning regulations limit the height of adjacent buildings to 120 feet, ensuring that the flow of air through this facade will not be obstructed. The sky garden's suspended walkways (opposite) have fritted-glass balustrades and incorporate seating.
computers, and lights, is transferred to the slab by radiation.

The architects and engineers collaborated to find the slab configuration that would promote the lamination of air and provide maximum cooling. In most towers, floor slabs typically sit on top of perimeter beams. But such an arrangement would have blocked air flow, impeded penetration of daylight, and obstructed views. As an alternative, the design team took advantage of the client’s desire for a raised floor and devised an upturned beam system. The slab suspended from these beams is ribbed with a wave profile in section, creating an efficient structure that weighs less than a conventional slab. It also provides additional concrete surface area, enhancing the slab’s ability to absorb heat. In this element, the requirements of “thermal mass, architecture, structure, and daylighting all came together,” says Steve Ratchye, who was Arup project structural engineer and now is an associate in the Los Angeles office Thornton Tomasetti.

Most tenants are reportedly pleased with the daylight and views, but some complain that the building is too warm after several hot days in succession. McConahey confirms that this will be the case, especially if occupants open windows too early on a hot morning, prematurely causing the structure to lose its ability to cool, due to exposure to warm air. To help tenants better understand their role in maintaining a comfortable work environment, the owner is preparing an operations manual geared to individual occupants, according to Ciprazo. It is also installing shades at some locations in response to complaints about a lack of visual privacy in private offices and glare on computer screens under certain daylighting conditions.

The GSA is gathering less anecdotal information through an extensive postoccupancy evaluation. Over the next 18 months, researchers will evaluate energy consumption, lighting levels, acoustics, temperature, and air quality, as well as more subjective factors, such as employee satisfaction. Project participants are confident that the building will perform as predicted once it is fully commissioned and the tenants become familiar with their role in its operations. Even so, they do not foresee a proliferation of naturally ventilated office towers across the U.S., since there are few other places with the right climate conditions. Instead, they say, the lesson of the Federal Building is about achieving sustainability through a deep understanding of site and location. According to McConahey, “appropriate engineering solutions arise out of groundedness.”

For sources, see page 132.

ONLINE: To rate this project, go to architecturalrecord.com/projects/.
Submit your project to construction.com/community/gallerylist.aspx.
CRITICISM: One person at a time

Sylvia Lavin, a professor and the former chair at the University of California at Los Angeles's Department of Architecture and Urban Design, has written extensively on architecture and the work of Thom Mayne and Morphosis, including a contribution to the 2006 book Fresh Morphosis. Her tenure as chair at UCLA included working with Mayne, also a professor in the department. In this essay, she considers the San Francisco Federal Building in terms of a global war on terrorism, where governments matter less than individual terrorists operating across borders. For Lavin, architecture must change to meet these terms, for the architect's place is no longer to criticize institutions in order to effect utopian change, but to reach the individual people within those institutions, which offers the best hope for improving the world.

What does it mean for a Pritzker Prize–winning architect to build for the federal government as it wages a war of choice? In the past, I would have said this was an unreasonable question to ask an architect. I would have explained that we ask such questions because it's easier to blame homelessness, for example, on architects because they design houses rather than on the social and economic systems that structure housing. Architects have extra social obligations because they are educated and belong to the professional classes, but not because they are architects.

I would have invoked the notion that architecture is a relatively autonomous discipline. Just as lawyering is not "the law," architecture is not reducible to the sociology of building use, and its structures not synonymous with the institutions they house. I would, in other words, have set up a perimeter protecting the autonomy of architecture as a discipline—with its own internal rules and language—from the messiness of building as a professional and material practice. Furthermore, I would have felt it was my social obligation to keep architecture free from such contaminations, able to pursue issues not dictated by the pursuit of political or economic advantage.

But that was in the past. Today, suicide bombers in public places and elective warfare have collapsed the distinction between the civilian and the military realms, between blameless bystanders and legitimate targets. And because the logic that maintained these oppositions—between personal innocence and institutional responsibility—is the same logic that separated architecture as a discipline from building as a profession, architectural autonomy must now be added to the list of the casualties of war.

Morphosis's Federal Building is both a good and a bad excuse to consider the impact for architecture of losing its autonomy. Bad, because it is always onerous to use a single example to examine a general condition. And worse, because while Thom Mayne has fought to strengthen the cause of architectural self-determination against the forces that make architecture a weak service provider, he has simultaneously fought to engage the political process, deliberately seeking work outside the cultural sphere and within the milieu determined by restrictive public agencies.

But these reasons also make the Federal Building a potent demonstration of why these questions need asking now. First, the utter mediocrity of most public and especially federal buildings of the past few decades has kept them out of the public eye. The General Services Administration's Design Excellence Program has increased expectations, and Mayne is now its best-known poster boy. Second, Mayne describes his project as a unique combination of avant-garde formal autonomy and political engagement. He claims the capital he gains as a form giver makes him more effective in the social world and that he has thus become a new kind of critical architect who works with and through institutions rather than simply against them. Finally, the Federal Building is situated within the increasing misalignment of a series of once-coherent American beliefs: It is not a traditional civic monument, but an office building doubling as a representation of a federal government led by men in Washington, D.C., who like to eat McDonald's food and pretzels in a city known for high cuisine and progressive social policy but retrograde politics and conservative architecture.

This desynchronization of beliefs and institutions previously understood as intrinsically consistent may injure architectural autonomy but may also be a productive impetus for its reconsideration. A common refrain of contemporary warfare is that battle is waged against regimes not individuals—the U.S. didn't like Saddam Hussein as head of state, but Americans love the Iraqi people. This is the same model that organized the avant-garde who fought against the bourgeoisie as a social category but relied on the progressive patronage of its individual members. Historically, then, critical architects, like military generals, target institutions, not people. But increasingly, institutions that once had to be pushed to embrace modern secularism are now more progressive than the often deeply religious, culturally fixed, and socially conservative individuals running them.

The Morphosis design does not question the authority of the federal government or undermine its will to appear to occupy a moral high ground: Indeed, I suspect the design will make most federal employees feel virtuous about going green and grateful for the fresh air and great views. But since the most direct means of effecting change is no longer the government as such but the people who vote (or don't vote) for our elected officials, it is now necessary to ask, "Just who will be going to work in the Federal Building every day?" Certainly not the resistant proletariat for whom the Russians designed housing in the 1920s and Le Corbusier the Unité, the organizational models adapted by Morphosis for this office building. Instead, the employees here, necessarily U.S. citizens, can at best feign indifference to the government's international policies. For an architect with Thom Mayne's political persuasions, manifested precisely in his choice of architectural precedents, these "but I-just-workhere" users are more combatants than allies.

Once it becomes permissible to see the user as a potential soft target (an undoubtedly sacrilegious observation, since architects always overidealize the user), it also becomes conceivable that architecture may lose the war on autonomy but win the battle to effect change. So maybe the big battles are the micro-events that will inevitably occur: in the Federal Building's skip-stop elevators, indoor landscapes, and outdoor living room: all these misaligned and mismatched spaces where a Bay Area mix of users who may share nothing more than a preference for stucco and gingerbread over glass and steel will go about their supposedly apolitical business. This may not seem like much on an institutional level, but I like to think that this contemporary user will miss exploiting natural ventilation when at home, the chance encounter in a sky lobby, the charge of an environment filled with newness, and above all the feeling of feeling virtuous. In this age of global warfare fought in local theaters of operations, the common denominator of what Mayne likes to call his singular buildings and suicide bombings turns out to be just one person at a time. This person is no longer intrinsically innocent and sacrosanct, no longer amasses into a necessarily virtuous community, and no longer occupies a preternaturally demilitarized zone called "public space." This person is a target, one that architecture like that of Morphosis—once understood to be autonomous because it focuses its effects on individual experience rather than institutional program—has both a new obligation and potential to explosive engage.
The sky lobby, outlined by a neon installation by James Turrell, is open to the public and provides spectacular views of the South of Market neighborhood and downtown.
Murphy/Jahn joins engineers Werner Sobek and Matthias Schuler to bring **SUVARNABHUMI AIRPORT**, Bangkok's sleek new air terminal, in for a landing.
The terminal has a central pavilion (1) beneath a great cantilevered canopy, long tubular concourses (2) extending out from under the roof, and paired parking structures (3) in front of the main building, along the entry road. The envelope enclosing the concourses (above and left) incorporates tensile fabric with glazing and curved steel trusses. The concourses provide access to the jetway gates (left).
As a national capital and a regional crossroads of commerce and tourism, Bangkok has long supported one of the world’s busiest airports—currently 15th in passenger volume. In designing Suvarnabhumi Airport, the city’s new international hub, Chicago-based architects Murphy/Jahn realized from the outset that the passenger terminal would need to accommodate a vast scale of operations and express its pivotal importance to Thailand. Suvarnabhumi, meaning “land of gold,” has a capacity of 45 million passengers annually, with 56 jetway (plus 64 bus-to-plane) gates, served by some 6 million square feet of floor area. Planned subsequent phases will increase its capacity to 100 million passengers per year.

The design, winner of an invited international competition held in 1994, presents a powerful image: a lofty pavilion under a gigantic canopy hovering over an area exceeding 1.2 million square feet, with tubular concourses extending from it. Though the concourses feature the kind of emphatically repeating structural modules that characterize entire recent air terminals, such as Norman Foster’s in Hong Kong [RECORD, November 1998, page 92] or Richard Rogers’s in Madrid [RECORD, October 2005, page 150], Suvarnabhumi rises to a dominant central volume. Like those other major airports, however, Bangkok’s could not have been realized without feats of structural engineering. It also demanded significant rethinking of interior climate control.

Since opening in late 2006, Suvarnabhumi has faced more than the usual spate of start-up stumbles and critical press. Objections—focused on everything from circulation, seating, and restrooms to cracked runways—have been intensified by accusations of corrupt construction management and concession leasing. Some scheduled, non-connecting flights have already been shifted back to the new airport’s dowdy but dependable predecessor, Don Muang, a facility that was to be relegated to private and military aviation.

Since Suvarnabhumi represents a huge public and private investment, said to exceed $3 billion, including aircraft-maintenance facilities, parking garages, and a hotel (in addition to the sleek new highway connecting the terminal to the city and the mass-transit link currently under construction), the airport management is trying to address the problems. Many of the functional shortcomings stem from retail operations that far exceed the scheme’s intended capacity, plus ad
hoc counters for newly proliferating budget carriers.

Initial glitches aside, the airport will clearly remain Bangkok’s key connection to the world, and the building’s sheer size and structural bravura are bound to impress any traveler. Since the approach to the terminal must pass a gauntlet of ancillary buildings by other firms, including the new hotel, right along the main axis, Jahn has always considered it crucial that the terminal’s central volume assert its primacy. (Fortunately, these new foreground structures have turned out quite discreet and neatly organized.)

As creative as the structural solutions, but scrupulously inconspicuous, is the innovative climate engineering (not called “mechanical engineering” by any of the participants). Throughout the design process, the architectural, structural, and environmental efforts were interwoven, transcending conventional hierarchies of architects and engineering consultants.

But the engineers who made it all possible were not yet involved when the scheme won the project competition. Once those consultants came on board, it became apparent that the proposal’s scale demanded exceptional engineering, both to make the structure itself feasible and to manage the energy to operate it. The architects found ideal collaborators in two Stuttgart engineering firms: Werner Sobek Ingenieure, for structural issues, and Transsolar Energietechnik, for climate control.

Murphy/Jahn principal Helmut Jahn speaks of the collaboration as a transformative experience. “This was the first time in 30 years that I learned something new from engineers,” he says. The joint effort “to elevate systems and construction to a level of art,” he adds, required “the architect to think more about the technical consequences of his forms and the engineers to consider the aesthetic implications of their concepts.”

So effective was this collaboration that Murphy/Jahn went on to work with the same engineering firms on several other projects over the past decade, as the Bangkok airport proceeded by fits and starts. Sobek joined forces with the architect on the Munich Airport Center and Cologne-Bonn Airport facade, and all three firms collaborated on Bonn’s Deutsche Bank Headquarters tower, Munich’s Highlight Business Towers, Geneva’s Serono Headquarters, and in Leverkusen, Germany, the Bayer Headquarters.

A major consideration in the Suvarnabhumi collaboration was Bangkok’s intensely tropical heat, humidity, and sunlight. So the team designed the great canopy “floating” above the terminal’s central hall to admit controlled rays while providing essential shading for glazed exterior walls and landside roadways. With no interior columns under this 689-by-1860-foot roof plane, the design dictated clear spans of a magnitude more often encountered in bridges. Eight 2,710-ton trusses—each spanning 413 feet, with 138-foot cantilevers at both ends—support the canopy. In silhouette, these trusses essentially diagram the bending moments acting on them, with the greatest depth at midspan and over the supports. Taking this full-scale structural lesson further, each truss changes in cross section, depending on which chord, upper or lower, is in compression: Paired members signify compression and single ones tension, since the latter condition requires less steel for comparable loads.

These megatruusses make possible a column-free space of urban
Structural feats made the competition-winning scheme possible

Designed by Murphy/Jahn, the main control tower is reportedly the world's tallest, rising 434 feet (near right). The central pavilion's 689-by-1,860-foot roof plane allows for a vast column-free interior. Eight 2,710-ton trusses—each spanning 413 feet, with 138-foot cantilevers at either end—support the canopy. These trusses, changing often in cross section (below right), are essentially diagrams of the bending moments acting on them, with the greatest depth at midspan and over the supports. The curved five-point trusses in the concourse (opposite) hold alternating sections of tensile fabric and glazing (far right and opposite, left).

SECTION 1
SECTION 2
SECTION 3
SECTION 4
SECTION 5

MEGATRUSS PLAN

1. Arrivals lobby
2. Bus lobby
3. Departure lobby
4. Retail
5. Check-in counters
6. Baggage claim
7. Baggage make-up hall
8. Restaurant/observation deck
9. Office

10. International arrivals corridor
11. International hold room
12. Bus gate
13. International departures corridor
14. Domestic departures corridor
15. Domestic arrivals corridor
16. Lavatory
17. Waiting lounge
18. International airline lounge

SECTION A-A
proportions. Enclosed within cable-supported walls of clear glass, this area constitutes a vast plaza with check-in counters, as at so many airports, lined up like booths in a market square. While the truss-supported canopy overhead is impressive for its structural accomplishment, its sheer scale and mass can also seem oppressive during the day when its forms are cast in shadow. But by night, blue and white light bathes the massive structural elements, making them look almost buoyant.

Lighting consultant Yann Kersalé of AIK chose the cobalt-blue glow to single out the main pavilion from the airport’s diverse nighttime sources of illumination. Metal halide lights the columns, blue fluorescent the trusses, and blue neon the canopy’s edges, with these three fixture types adjusted to achieve essentially the same color. (Jahn had integrated intensely hued lighting into an airport before, as in the 1987 United Airlines Terminal One Complex at Chicago’s O’Hare International Airport.)

By day, a key function of the canopy is to admit enough sunlight to eliminate the need for electric illumination. Since a remarkably small fraction of the ambient light fulfills this need, the design team gave the roof a ripple of low-sloping planes with opaque aluminum-clad panels facing south, and glass fritted to 95 percent opacity facing north. Fixed exterior, aluminum louvers, engineered to cut out all direct rays, also shade portions of the canopy.

Even with modulated sunlight and deep overhangs, the resources required to air-condition the entire central volume to passenger-comfort levels (with a 75-degree Fahrenheit maximum and 50-to-60 percent relative humidity) would have been inordinate. This dilemma presented an ideal challenge for Transsolar principal Matthias Schuler, whose climate-engineering goal is to minimize, rather than simply fulfill, mechanical demands. For this 47-foot-high space, the firm proposed conditioning only the inhabited layer—roughly up to 8 feet above the floor in both the central hall and concourses—effectively halving the air-conditioning’s energy and installation demands.

The key to stabilizing this air layer was cooling the floor slab with embedded tubes of chilled water in closed loops. By offsetting the radiation striking the floor, this “radiator slab” eliminates the destabilizing heat that would otherwise rise from it—as virtual and physical models confirmed. Cooling the floor also maintains passenger comfort levels with less air-conditioning, bringing added savings. Throughout the terminal, shoulder-high pylons, lens-shaped in plan to minimize interference with passenger circulation, supply low-velocity, conditioned air. And this stratified-air concept eliminates the glazed envelope’s need for thermal insulation above the conditioned “layer.” Since the upper reaches usually get warmer than the outside air, the negligible insulation value of single glazing at those heights actually helps disperse heat.
With the intent of retaining clear views through the luminous, tubular concourses, the architects created various spatial configurations within them, inserting different levels for gateside waiting (above) versus larger circulation zones (opposite). Daylight even fills the baggage-claim area (below).

The concourses embody another structural tour de force, very different from that of the super-scaled canopy. These tubular appendages, providing access to the gates, took the same overall form even in Murphy/Jahn’s competition entry, but the real integration of architecture with structural and climatic engineering came through the execution of these elements. The team configured the envelope’s alternation of tensile fabric with areas of glazing so that the glass sections (defining curved triangles) remain nearly continuous at eye level. Overhead, the fabric canopy and the glazing, which progresses from a 20 percent opaque frit at its base to 80 percent at its peak, produce effective shade. Structurally, the tubular form spans the concourse’s 89-foot width with five-point trusses—a configuration suggestive of linked wishbones.

A daunting set of structural, thermal, acoustic, and illumination demands challenged the design of the tensile fabric, resulting in a membrane of three layers: an outer structurally and weatherproofing surface composed of polytetrafluoroethylene (PTFE)-coated, high-performance glass fiber; a middle airtight layer of polycarbonate panels, which block out aircraft noise, absorb interior sound, and stiffen the membrane against wind; an inner skin of open-weave glass fiber, transparent to sound; and an aluminum coating that reflects outside heat back toward the exterior. While the membrane is heated by lighting and occupancy on the inside, and by sunlight and the ambient air temperature on the outside, the metallic coating keeps heat from radiating to the interior. “Otherwise,” says Stefan Holst, Transsolar project manager, “[the skin] could act as a big
radiator.” This fabric sandwich has earned worldwide patents.

While the concourse envelope transmits only 1 to 2 percent of the available sunlight, it eliminates the need for daytime electric illumination. (Even with a graduated frit, the glazing appears entirely clear from the interior.) After dark, the metallic inner surface becomes an effective reflector for indirect lighting.

While the terminal’s program has always included a very large shopping component—key to today’s commerce airports—retail operators were permitted to expand far beyond the areas allocated in the design, without the architect’s input or approval. To make way for this unplanned retail, four pairs of moving walkways (totaling 827 feet of walking distance) were eliminated, some proposed seating was displaced, and circulation routes constricted. Sight lines, intended to remain open and ease wayfinding, were obstructed. Management issues seem to lie behind other passenger inconveniences, such as the frequent busing to international flights even while numerous jetway gates stand idle. Repairs to faulty taxiway paving may account for some of this practice, coupled with the airlines’ resistance to jetway “docking” fees that run significantly higher than at the old airport.

In the departure hall, budget airline stations now constrict the space and interfere with clear views from drop-off curb to ticket counters. In the arrivals hall, unplanned commercial kiosks crowd the area allotted for travelers to meet friends, associates, and drivers. And an initial overload on restrooms apparently resulted, in large part, from an unanticipated surge of local sightseers outside of security-screened areas, with some picnicking and staying for hours. Although those crowds are expected to dwindle, the airport is strategically inserting extra restrooms.

In zones reserved for future expansion at either end of the central pavilion, the airport now presents gardens, designed by RPU Landscape Design Group, with geometric and organic forms drawn from Thai tradition. While these areas remain accessible, the designers conceived them primarily to be viewed from a level or two above—with entry points isolated from passenger routes. And to traverse the Jungle Garden, designed by NT Architects for a space between the main pavilion and the parallel concourse, visitors must remain within glazed passageways.

In the larger scheme of things, the terminal’s present functional deficiencies are prime examples of a truisms: The client, whose building it is, can subvert even the best design intentions. Given the widespread objections and huge investment in this airport as a national symbol, the management is likely to reverse some of its unfortunate physical changes, enhancing the interior’s experiential qualities and restoring a portion of the ample passages and uncluttered vistas that Murphy/Jahn envisioned. For designers of future public facilities, Suvarnabhumi Airport bears lessons, both inspirational and cautionary; and for passengers, the remedial measures should offer greater chances for actual enjoyment of the terminal’s exhilarating spaces. ■

For sources, see page 132.

ONLINE: To rate this project, go to architecturalrecord.com/projects/. Submit your project to construction.com/community/gallerylist.aspx.
Christoph Ingenhoven with engineers Werner Sobek and Klaus Daniels devise a crystalline, energy-efficient workplace for LUFTHANSA AVIATION CENTER in Frankfurt

1. Airport ring road
2. Frankfurt airfield
3. Space for future expansion and ramp to underground parking

Ample glazing and a light concrete frame give the aviation center the appearance of an airy pavilion as one approaches it from the east end (above). The long, linear building, next to the airport, features skylit atriums and acoustically insulated offices.
In recent years, Christoph Ingenhoven, who began his practice in 1985 in Dusseldorf, Germany, has emerged as a formidable player in the architectural market owing to an approach that emphasizes technology and sustainability. Although his 1991 scheme for the Commerzbank Tower in Frankfurt came in second to Norman Foster’s proposal, his firm, Ingenhoven Architects, went on to design an elegant 416-foot-high tower for RWE (Rheinisches-Westfälisches Elektrizitätswerk), completed in Essen in 1997. It was, he says, the first ecologically oriented high-rise designed throughout with a double-skin glass facade for natural ventilation of office areas. Currently, Ingenhoven is working on towers in Luxembourg; Osaka, Japan; and Sydney, Australia.

Ingenhoven’s major recent work in Germany, the new Lufthansa Aviation Center, is strategically located right next to Frankfurt airport—therefore subject to considerable constraints in terms of air pollution and noise emissions. The site is squeezed between one of the most heavily used German autobahns, the ICE high-speed railroad line from Frankfurt to Cologne, with the airfield to the south. Ingenhoven’s competition-winning scheme for Lufthansa is a powerful modern structure, subdivided into 10 wings, and separated by fully glazed gardens that function as thermal buffer zones and provide fresh air to the office areas for Lufthansa’s 1,850 employees. The overall envelope of double- and triple-layered glass, plus various climatic tools—such as the use of embedded hydronic-loop systems to activate the thermal mass of the exposed concrete surfaces in storing and dispersing heat or cold at a later time, along with additional heat-recovery methods, highly efficient sunshading, and air-ventilation systems—are impressive. All keep the thermal loss and energy consumption to a mere 355 kilowatt hours per square foot, such a low level that the building comes close to complying with the German standard for low-energy houses. These astonishing results are the product of close collaboration with climate engineer Klaus Daniels, founder of the pioneering climate consultancy HL-Technik. Ingenhoven also joined forces with structural engineer Werner Sobek (renowned for his close cooperation with Murphy/Jahn, see page 122) to define the shapes for both the glazed and concrete roof modules. The glazed atria roofs boast a free 60-foot span and consist of barrel-shaped grid shells of nonbending, welded rectangular steel sections. They connect to the likewise barrel-shaped concrete roofs covering the office spaces, which, while shell-like in appearance,

Project: Lufthansa Aviation Center, Frankfurt, Germany
Architect: Ingenhoven Architects—Christoph Ingenhoven, principal
Engineers: Werner Sobek (structural); Klaus Daniels/HL-Technik, Brendel, Ebert (building services)
Consultants: DS-Plan (facade design); DS-Plan, Institut für Bauphysik Horst Grün (building physics); Tropp Lighting Design (lighting); WKM Weber Klein Maas (landscape design); Baumgartner & Partner (energy concept)

Peter Cachola Schmal, an architect and author, is the director of the Deutsches Architektur Museum, in Frankfurt, Germany.
The 10 bays of office banks and light-filled atriums, slightly wedge-shaped in plan, are placed so that the narrow ends of the office banks and the wide ends of the atriums face toward the outside. From the exterior, the landscaped atriums seem to dominate.

1. Entrance portico
2. Atrium
3. Offices
4. Meeting points
5. Web terminals
6. Parking garage
The roof of the entrance pavilion (left) and those of the atriums are double-curved steel grids with glass panels. Landscaping by WKM Weber Klein Maas uses plants from different regions to provide variety. Wood framing for interior glazing adds a natural tone to the whole.

are basically bent, flat, 11-inch-thick slabs that rest on single high-performance concrete columns or cores. At the junction of the two roof systems, Ingenhoven introduced a special wing-shaped spoiler, based on aerodynamic experiments. The spoiler creates a permanently neutral wind-pressure zone above it, which helps suck exhaust air out of the atrium.

In addition to such elaborate technical details, the architects concentrated on creating a work environment aimed at fostering the well-being of the employees, with equally comfortable work spaces for all. High-quality insulation glass keeps the sound level inside the building amazingly low, and open-plan areas with fully transparent partitions walls bring in natural light in abundance. The main passageway, dotted with many cafeterialike stops, encourages informal meetings among employees. Unlike a customary stuffy corridor, Ingenhoven's exciting cutaway spatial structure fosters a variety of views into the multilayered building. On the ground floor, the gardens designed by landscape architects WKM Weber Klein Maas likewise contribute to the relaxing and airy atmosphere. The staff canteen is located on the highest floor, overlooking both the nearby Kelsterbach forest to the north as well as the airfield to the south, with huge photo prints by Thomas Demand of an artificial jungle decorating the wall. His site-
The double-skin facade provides low-energy heating, cooling, and ventilation (section, above). Vertically tensioned cables in the atriums (top and bottom right) create a delicate framework for the glass.
Collaborating on a low-energy, high-tech structure

Ingenhoven worked with engineer Werner Sobek to create a reinforced-concrete structure for the modular pavilions. Prestressed reinforced-concrete shells, 138 feet long and 11 inches thick, cover the office wings, while non-bending, welded, rectangular steel sections form barrel-vaulted shells for the atrium roofs. Tall, slender, reinforced-concrete columns in the corner atriums offer support without obstructing the view. At the juncture of the concrete and steel-grid roof vaults, airfoil elements help with ventilation and rainwater control. Engineer Klaus Daniels conceived the numerous climate-control elements throughout.

As the summer ventilation diagram shows (above), cool air is drawn through air-supply-intake stacks into the ground. As it moves up, it cools offices; warm air is then sucked up through airfoil units (top).

1. Office module
2. Raised floor
3. Sunscreen
4. Perimeter heating and cooling
An undulating central spine bifurcates the aviation center and is wide enough for crescent-shaped meeting places (above).

Crescent-shaped openings around curving open-riser stairs admit daylight and foster visual connection between levels.

specific work is part of the latest addition to this working environment of the future, which includes a collection of artworks put together by Max Hollein and Nikolaus Schaffhausen, both of whom are curators and museum directors.

Today, the airport is already operating at full capacity, and plans are afoot to build a third runway north of the highway that will enlarge the capacity of the airport from 53 million to 75 million passengers a year. The situation is politically intricate, but crucial for this unusual airport located only 20 minutes by car from Frankfurt's central business district. After the runway is built, a third terminal south of the current airfield, on the site of the former U.S. Rhein-Main airbase, will be constructed, enabling Lufthansa to enlarge its headquarters building.

Since Ingenhoven designed the modular office complex to allow for future additions, expansion could easily accommodate 4,500 people in the future. The building's slowly ascending profile as part of a bow-shaped crescent would find formal completion when a total length of more than 1,600 feet has been reached, three times the current 600-foot length. It will not only stand as a symbol for the paradigmatic change of office spaces in general, but will also be one of the largest sustainable work-space complexes placed at a very public traffic node.

For sources, see page 132.

ONLINE: To rate this project, go to architecturalrecord.com/projects. Submit your project to construction.com/community/gallerylist.aspx.
The positioning of the crescent-shaped openings with glass balustrades through the seven-story building creates a sculptural, somewhat vertiginous, light well.
The tram links the hilltop site of the Oregon Health and Science University with a new medical campus about a mile downhill at the crook of the Willamette River.
In Portland, **AGPS Architecture** and Arup tease drama out of the **AERIAL TRAM**, a landmark of engineering bravado

![Diagram of the AERIAL TRAM]

By Randy Gragg

Instead of landing on a mountainside and anchoring into bedrock, Portland, Oregon’s new aerial tram soars between two 200-foot towers, representing Olympian engineering gymnastics. Similarly sized high-rise buildings, with no tram, might require a dozen load cases. By contrast, the Portland tram’s structural engineers, Arup, calculated more than 2,000 separate cases for such structural feats as bracing the 165 million pounds of overturning moment caused by holding 1 million pounds of cars and cables in the air; the 20,000 tons of torque triggered by the tram cars passing one another; and the 80 tons of wind load carried by the cables stretching along the 3,300-foot route.

In addition to constructing sky bridges and buildings that span ravines, the hilltop Oregon Health and Science University added the aerial tram as its newest connecting structure. This gesture at once connected new related development at the bottom of the hill and addressed the tangled web of passageways that define every medical campus of a certain age, including this one. Given that the tram cars would fly over Portland’s oldest national historic district, two parks, 13 streets, and eight freeway lanes, the architecture needed to be compelling. The developers, university, and city organized an international design competition, which the Los Angeles/Zurich firm Angeli/Graham/Pfenninger/Scholl (agps architecture) and Arup’s Los Angeles office won over three other teams. Inspired by the work of celebrated Swiss timber engineer Julius Natterer, as well as the region’s tradition of loggers’ yarding poles, the agps/Arup team initially proposed towers made of high-tech wood laminates and mirror-finished tram cars shaped like bubbles.

Reality quickly intruded. To fully integrate with the campus’s so-called ninth floor—a single-level series of corridors and sky bridges connecting all of the hilly campus’s patient-care and research facilities—the tram needed to land at a new hospital expansion already under construction. University officials worried the tram’s 470-kilowatt motor turning an 8-foot “bullwheel” coupled with a 40-ton concrete counterweight constantly moving up and down would vibrate the hospital’s microsurgery facilities. This led the engineering team to structurally separate the tram from the hospital. Thus, a freestanding tower had to serve as the upper station while holding 1 million pounds of tram cars and cables aloft.

The architect and engineers knew the loads would be extreme

Project: Portland Aerial Tram, Oregon
Architect: agps architecture—Sarah Graham, AIA, partner; Marc Angéli, Moshe Mah, Mark Motonaga, Joe Baldwin, Scott Utterstrom and Chet Callahan, project team
Engineers: Arup (structural, m/e/p); Dewhurst Macfarlane and Partners (facade engineering); Geo Design (geotechnical); We-H Pacific (civic)
General contractor: Kiewit Pacific Company

Randy Gragg is the former architecture critic for The Oregonian. He is the editor of a new shelter and city design magazine, Portland Spaces, making its debut in January.
Minimal architecture to convey complex ideas

Sarah Graham, AIA, partner in charge: "As the idea for the tram was minimal infrastructure, the drawings intended to represent that idea in their language of reduction. We drew as few lines as possible, which translated into as few layers and materials as possible."

1. Saddles
2. Landing
3. Landscape

The section (far left) indicates the main weld joints of the tapering, 199-foot-tall intermediate tower. The plan cuts through the tower (left) indicate the twists it undertakes from its base to top. Precise full-penetration welds on the ¾-inch plates were required to resist the massive dynamic loads of the tram cars.
Tram elements include an upper station (top and bottom left and opposite); an intermediate support tower (top right, in the background); a lower station (top and bottom right); and two tram cars that operate in a jigh-back configuration.

The upper station is an open-air covered platform supported by braced steel legs balancing on a steep site, wedged between hospital buildings. The lower station is an open platform at street level with a covered roof.

for a wood structure, but the team soon learned from the Austrian tram manufacturer Doppelmayr that the tolerances were unforgiving: 1/8 inches maximum movement for the upper tower and 3/8 inch for the intermediate tower. “It seemed at the far edge of the possible,” recalls Sarah Graham, AIA, apps’s partner in charge.

The team quickly abandoned wood for steel, but still hoped to retain the original concept’s simplicity and lightness. Augmented by a combination concrete stair and elevator core, the upper tower’s original criss-crossing pilotis proved adaptable to a simple scheme of two counter-braced A-frames made of four hollow legs fabricated out of 1-inch plate steel, all anchored in a single 10-foot-thick piling cap.

The intermediate tower’s need for tortional stability, however, proved tougher to solve. For the design competition, the team imagined a single, cable-stayed pole. The team tried dozens of multilegged schemes, but each lacked either the necessary rigidity or the elegance required of a future city icon. “On any project with architecture with a capital A,” points out structural engineer Steve Ratchye, then of Arup, now with Thornton Tomasetti, “you try many things that lead to a lot of dead ends.” Graham finally switched her strategy, she says, to “working the forces” with hollow steel—a single, tapering, bending, hollow tower sculpted out of 3/8-inch steel plates. Though it soars upward with the grace of a Brancusi bird, the tower is all business: The 10 percent vertical tilt better counters the cable loads and the carefully welded, tapering, trapezoidal cross section calms wind vibrations in a manner known as “vortex shedding.”

Graham describes the tram’s design as “all engineering.” That made the aesthetic discoveries—and debates—all the more fun, in Graham’s words. Budget cuts, for instance, nixed photovoltaic cells, glass, and polycarbonate for the tram stations’ windshields. So, working with facade engineering specialists Dewhurst MacFarlane and Partners of New York, Graham switched to the coarsest available expanded-aluminum mesh. This first-ever application of the material as cladding required extensive wind testing. The result blankets the muscular, no-nonsense docks in ethereal shadows and shimmering moiré patterns.

The widest departures from the arduous form-follows-engineering design are the tram cars. Budget required the team to use Doppelmayr’s stock, safety-code-approved frame design. But for the outer skin, Doppelmayr brought two former Bugatti sportscar craftmen out of retirement to hand-hammer a curvilinear shape. The result isn’t the other-worldly bubbles that apps/Arup first proposed. It’s better: a simple, classic design that adds just the right flourish to the poetic minimalism of this unprecedented transportation project.

For sources, see page 132.

ONLINE: To rate this project, go to architecturalrecord.com/projects/. Submit your project to construction.com/community/gallerylist.aspx.
U.S. FEDERAL BUILDING
San Francisco
(page 96)
Sources
Curtain wall: Permasteelisa
Cladding Technologies (aluminum); T&O Manufacturing/Permasteelisa
(perforated-steel panels)
Glazing: Viracon (exterior); Old Castle (interior)
Paneling: Swisspearl (fiber-reinforced cement); 9-Wood (perforated maple)
Surfacing: Perfect Polish (concrete floors); Ecofloor (rubberized);
Armstrong World Industries (linoleum)
Cabinetwork: ISEC
Roofing: Tremco
Lighting: Zumtobel (pendants, downlights); Lighting Services
(lantern fixtures); Arrow (neon artwork)
Paints: Tiger Drylac Powdercoating (interior stair and guardrails); ICI
(wall paints)
Office furniture: Herman Miller
Wall coverings: Impact Imaging (custom-printed panels)
Ceilings: Armstrong World Industries (acoustical panels, suspension grid)
Carpet: Interface
Conveyance: Mid-American Elevator

SUVARNABHUMI AIRPORT
Bangkok
(page 122)
Sources
Curtain wall: Permasteelisa/KAMA
Concrete: Ritta; Italian-Thai Development
Roofing: B&O Hightex (fabric membrane)
Glazing: Viracon; Thai-German Specialty Glass (glass); Chadwick
Airport Consortium (skylights)
Doors: NABCO (entrances); Ceco (metal doors)
Hardware: Schlage
Interior finishes: CCM Airport Equipment (casework, signage); TOA-Chugoku (paints, stains)
Flooring: Marbelx (Terrazzo tile); Lindner (raised flooring)
Fixed seating: Akaba
Conveyance: KONE (elevators); Mitsubishi (escalators); Hitachi
(moving walkways)
Baggage handling system: Kawasaki
Stainless steel: Thapanin
(planks and stairs)

LUFTHANSA AVIATION CENTER
Frankfurt
(page 108)
Sources
Curtain wall: Josef Gartner
Metal lining: Schmid (ceiling)
Furniture: Vitra
Lighting: ERCO Leuchten
Technology: Gira Giersiepen (room-specific control units)
Washbasins: Pfeiffer & Söhne
Grips/fittings: Franz Schneider Brakel

PORTLAND AERIAL TRAM
Portland
(page 116)
Sources
Exterior coating: Wasser; Taemec
Exterior cladding: James Hardie (concrete fiber board); Dramex
(aluminum panels); AIG (aluminum fastening)
Elevator: Schindler Elevators
Waterproofing: American Hydrotech
Paint: Sherwin Williams
Glass: Oldcastle Glass
Storefront system: Kawneer
Louvers: United Enertech
Light: fixtures: Bega; Omeagluz;
Prudential; Lithonia
Flood barrier: Presray
Gypsum sheathing: GP
Structural steel fabrication:
Thompson Metal Fabrications

For more information on these projects, go to Projects at architecturalrecord.com.
Think BIG.

An architect's vision often leads to majestic and imaginative new designs. That's why they count on RIXSON, the company that makes it possible for concert halls, libraries, and office buildings to be adorned with highly impressive openings.

From the most modest to the grandest of doors, RIXSON's concealed closers and pivots ensure effortless operation and superior performance, without sacrificing lasting beauty.

Our Products Support Your Vision. Think RIXSON.
Belden Brick received eleven awards in the 2006 Brick in Architecture and Brick in Home Building Awards competitions sponsored by the Brick Industry Association. An award-winning manufacturer of the very highest quality brick for more than 122 years, Belden Brick offers architects beauty, versatility, unlimited design potential and enduring appeal. For your next award-winning project, specify Belden Brick.
Break free from the client and develop your own future!

JONATHAN SEGAL FAIA recently spoke at the national AIA convention to over one thousand attendees. The response was tremendous. The interest incredible. More and more architects want to develop their own work to gain complete control over their projects, while increasing profits. Jonathan Segal will go through case studies of his own work, taking attendees through the entire process start to finish, while explaining the following topics:

October 28, 2007
LOS ANGELES, CA
Dorothy Chandler Pavilion

REGISTER ONLINE:
$595/person (before Sept 1st)
$695/person (Sept 1st-Oct 1st)
$795/person (after October 1st)

www.architectasdeveloper.com/ar

- How to develop a single-family residence
- How to develop a multi-family rental project
- Title insurance
- Proformas
- Bank financing
- Insurance
- Permanent take out financing
- Construction contracts

Each attendee will receive a step by step manual outlining the process.

Space is limited. Register online at www.architectasdeveloper.com/ar
Pilkington Planar™
The World’s Leading Structural Glass System

It’s All About The Glass!

W&W GLASS, LLC
800.452.7925
wwwglass.com

Photographer: Adrian Wilson
CIRCLE 55 ON READER SERVICE CARD OR GO TO ARCHRECORD.COM/CONSTRUCTION.COM/PRODUCTS/
TALL BUILDINGS

Topped/Tapped Out

“If you had to cut costs, why didn’t you cut floors instead of corners?” —Paul Newman, as architect Doug Roberts in The Towering Inferno.

By Russell Fortmeyer

The skyscraper has had more comebacks than Cher. From its humble, naive beginnings in Chicago after the fire of 1871; its idealistic representation in early European Modernism; its apex as the glam symbol of American corporate eminence; its bimbo phase in Postmodernism; its more recent dalliance with high-tech engineering; and culminating with its supposed demise on September 11, 2001, the skyscraper is one helluva contender.

Every time we think we’ve solved the typology, realized its total fulfillment, and built the freshest example, the skyscraper struts out in yet another tectonic version of a Bob Mackie gown—dripping in sequins, devoid of meaning, pure fabulousness. And we can’t turn away.

“The industry is able to build these unusual forms, but we haven’t got our minds around what that means,” says David Scott, a structural engineer in Arup’s New York office and the current chair of the Council on Tall Buildings and Urban Habitat. “People are being too flippant.” Scott worries that although tall buildings can address rapid global urbanization, enough architects and engineers aren’t considering the attendant environmental context in terms of ecological impact. Too often, he says, architects apply sustainable concepts to the existing skyscraper typology, without questioning the typology itself.

Enter the dazzle. We are awash in new skyscrapers, but the typology’s reenergized career banks on one of two design strategies: go really tall or technologically dazzle. Think of it as choosing between Gothic and Baroque, minus the cultural baggage. We can always go tall, though how tall remains an open question. Dazzle is much harder to locate—be it techno gimmickry, stylistic parlor tricks, or a trendy patina of sustainability. The proposals for the World Trade Center (WTC) site were one long, dazzling...
auditon after another for a comeback tour that never happened. Regardless, at any given moment, we can find a skyscraper (or two) to step forward as the repository of our collective wish fulfillment: the Burj Dubai and Beijing’s CCTV Tower.

Structural engineer Bill Baker in the Chicago office of Skidmore, Owings & Merrill (SOM) claims the Burj will be the tallest building in the world once completed in 2008 (around 160 floors rising over 2,600 feet). And Arup’s Cecil Balmond, the lead structural engineer on Rem Koolhaas’s and the Office for Metropolitan Architecture’s CCTV, also to be completed in 2008, has called that building the most structurally complicated he’s ever designed. Tall or dazzling, both towers are icon-making tools, visual propaganda for political states in the throes of expansion. Be careful what you wish for.

The Burj and CCTV also willfully rebuke America’s assumptions of skyscraper preeminence, despite the fact that both projects—like so many others today—represent global design teams with significant American contributions. The computer doesn’t care where you are, and so-called building information models (BIM), heartily embraced by firms such as SOM, Arup, KPF, Buro Happold, and FXFOWLE, promise to further simplify and concretize the collaborative design process. But that is a problem internal to architecture and engineering, entirely solvable through the market (just ask Autodesk and Bentley), whereas getting the tall or dazzling project built remains at the mercy of so many bureaucrats and businessmen.

Market and regulatory demands have become so pernicious for skyscraper interests in the States—epitomized by the flawed process at the WTC site—that many domestic observers and fans of the typology have given up expecting anything more than mediocrity, or what we could start calling the “Miami Effect.” Hence, the media has a tendency to skirt past the tiny subject of democracy—not to mention safe job-site conditions and fair employment regulations—when raving about the “just-get-it-done” spectacles of Dubai, Abu Dhabi, Shanghai, Beijing, and so on. Conversely, if architecture needs Cosmism to realize a project like CCTV, what exactly did it require to accomplish what we are developing at Ground Zero?

Many eyes will stay trained on SOM’s developing Pearl River Tower in Guangzhou, China, the first “net” zero-carbon skyscraper designed to produce its own energy. The project represents the kind of optimism (and PR maneuver) that used to define American skyscrapers—neither the firm’s Burj nor its Freedom Tower at the WTC can compare to the performance-based innovations planned for Pearl River. There are still many in the design world, however, who doubt the project, since true building performance remains somewhat of a guessing game, especially for skyscrapers. It’s telling that there are few, perhaps less than a dozen, proposed tall buildings in the world designed with the strategies of Pearl River. When there is no precedent, clients get nervous.

These unresolved issues still linger in the rush to develop a new urban world, where the United Nations estimated in June that more than half the world’s population now lives in cities. Given the recent building boom, critics and theorists have written relatively little on the skyscraper, especially outside of the contexts of the WTC and such places as Dubai or Guangzhou. No wonder Koolhaas’s Delirious New York, which turns 30 years old next year, still reigns as provocative reading in architecture schools. Even Koolhaas builds more than he writes today—and some of his more recent proposals for skyscrapers, like that in Jersey City, certainly don’t inspire confidence. In 2002, Ken Yeang published his Reinventing the Skyscraper, A Vertical Theory of Urban Design, which lays down a fairly ambitious model of the skyscraper as an environmentally responsible ecosystem, a nonhomogenous collection of programmed and vegetated spaces that theoretically approximates the functions of a city for a globally connected Internet culture. Yeang’s writing and conceptual designs have appeal, especially among the green set, but like Koolhaas, the ratio of finished project to unbuilt proposal remains too low to gauge its effects outside of vanity projects. This is, after all, still serious architecture, with
a capital A, not your everyday Shanghai business park. As Yeang said at a recent lecture in New York, "Low-energy design is a lifestyle issue." And not everyone can afford lifestyle.

While we don’t lack a multitude of pretender firms to the skyscraper throne of invention, Koolhaas and Yeang remain, for better or worse, among the more credible voices. Koolhaas’s CCTV elegantly achieves the programmatic complexity of which Yeang writes, while avoiding the ecological dress (i.e., hanging gardens, sky terraces) and multiple structural systems as proof-of-concept of Yeang’s proposed Elephant and Castle Eco-Towers in London. But both architects participate in the cult of the skyscraper with us since early Modernism, granting the typology significance in urban design that it will never wholly realize (Koolhaas does it ironically, knowing the type is dead; Yeang believes his storyline). We used to call this sort of architecture utopian—we put our faith in the unrealizable dream of the skyscraper—but anyone getting caught up in this or that new skyscraper today is at best ignorant, or at worst, in denial.

Critic Cynthia Davidson, in the Spring 2004 issue of Log, laments the vacuum of ideas for the skyscraper, referring to 1920s and 1930s New York as evoked in Koolhaas’s book as a lost moment before the fall building became a power symbol motivated solely by economics. Is it any surprise that the critical fallout of the disaster of September 11 turns out not to be the demise of the skyscraper, but the revelation of its continued cultural, social, and political value? This is especially true for cities in developing economies.

So, if the reduced form of any skyscraper merely amounts to a symbol of power—whether tall or dazzling—the discussion must then shift to the consideration of who creates or, more important, who pays for the creation of these private/civic symbols—who is, in Davidson’s terms, projecting their “power”? This is the lesson of the WTC, in that it exposed, as much as humanly possible given the political circumstances, the machinations that fuel real estate speculation (and its pet, architecture) in today’s economy—the private, public, and global forces that act with little concern for the micro-local effects or even the strain on regional infrastructure.

We have always had a tendency to congratulate corporations, or the interests that control them, for building extraordinary skyscrapers, somehow identifying our beliefs in progress and economic success in their appearance on our skylines. The failure of imagination that has stymied the WTC and the politics plaguing other megasites—such as the twin Frank Gehry projects of Atlantic Yards in Brooklyn or Grand Avenue in Los Angeles—have only temporarily obscured the fact that we remain enamored of skyscrapers. So much so, we have been breathlessly converting obsolete models into residential use in nearly every American city.

Our selective memory enables us to overlook the relatively quick obsolescence of earlier skyscrapers, since so much of what tall buildings represent gets bound up in our desire to see them as continually new and built upon a typological tradition of impressive design vanguard. Could we consider that eventually even Renzo Piano’s New York Times tower will be converted to live/work lofts, that its super-modern sustainable features, open floor plates, and bizarre ceramic-rod shading devices will come to be seen as untenable in a shifting commercial economic landscape? That architecture (and its media) masks this question in everyday practice suggests that the imminent answer will surprise many of us.

For now, we consider three contemporary examples of how the skyscraper can dazzle. SOM’s impeccable, if straightforward, 7 World Trade Center, with its masterful play of light and transparency, is the first structure to rise on the site of the September 11 disaster. Mecanoo’s Montevideo Tower, in Rotterdam, anchors a waterfront revitalization with a vertical mass broken by differentiated curtain-wall finishes, setbacks, and dizzying cantilevers. AREP’s Sports City Tower, in Doha, Qatar, updates the observation tower with some added programmatic complexity hiding behind a steel structural wrapping. If none of these projects are quite the skyscraper’s comeback, they steadfastly deliver as an opening act. ■
Skidmore, Owings & Merrill have dropped a 1.7-million-square-foot hint for the buildings we can expect at a renewed World Trade Center.

By Russell Fortmeyer

There has been so much written on what should, could, or would be built at the site of New York's devastated World Trade Center, the bound copies might likely fill the only tower that has actually been constructed: Skidmore, Owings & Merrill's 7 World Trade Center, or 7 WTC.

Not since the rebuilding in the 1990s of Berlin's Potsdamer Platz has there been a comparable undertaking in architecture: What do you build on a ruined site that occupies such a special place in the political, national, and cultural imagination of a people? If you're David Childs, FAIA—perhaps SOM's best-known design architect of the moment—you begin by building a 52-story skyscraper as a test, of sorts, of technology, aesthetics, collaboration—and will—before embarking on the adjacent 102-story Freedom Tower currently under construction.

Program
If you've opened a newspaper in the past six years, you know that Larry Silverstein is the developer of the WTC site, having leased the property from the Port Authority of New York and New Jersey weeks before 9/11. But his involvement in the site predates this. In 1987, Silverstein built the original 7 WTC, designed by Emery Roth & Sons, on top of a 1967 Con Edison substation serving Lower Manhattan, but you would never have known that, since the original tower connected directly to the WTC's elevated podium. Almost immediately after the September 11 disaster—in which the existing 7 WTC was left unoccupied, to burn and collapse, while emergency personnel focused on saving lives—Silverstein brought the original building's design team together with a new architect, SOM, to rethink the site so Con Ed could rebuild the substation.

Childs says he quickly realized the project could reconnect Lower Manhattan and the WTC site north to the city by opening up Greenwich Street, which the original 7 WTC had blocked. "It was important visually, urbanistically, and historically to put that line back, since Greenwich is the original edge of the Hudson River."
At 741 feet high, 7 WTC currently dominates the WTC site (opposite, top). The building’s parallelogram footprint, on the site’s western half, allows views north along Greenwich Street (right). At night, a programmed display of blue and white LEDs turns the base into a shifting, luminous surface (above). Varying stainless-steel wires (top) create daytime moiré patterns.
James Carpenter, the artist who collaborated with SOM to design the curtain walls (left), says the base was fabricated by a mining-engineering company that managed to keep costs down. The outer band of wires are 50 percent open, which allows for many visual effects. The Ken Smith–designed plaza (below right) includes benches, sweetgum trees, and space for rotating art installations, such as Jeff Koons's *Balloon Flower*, from Silverstein's collection.
Children says. It took some convincing for Silverstein, since it meant a reduced building footprint and a final size, even at 1.7 million square feet, that represents less space than that allowed by zoning. Furthermore, the substation, as well as mechanical equipment, occupies the first 10 floors, so leasable space fills only 42 floors. This base, which needed to be well ventilated and accessible, posed a serious challenge for architects of a speculative core-and-shell office building.

Solution
SOM made two key decisions that ensured the tower's success: the aforementioned restricted footprint, with the building on the site's west side, leaving space for a public plaza between Greenwich and West Broadway, and the collaboration with some celebrated names—James Carpenter, the light and glass artist, and Permasteelisa, the facade manufacturer—to develop the multifaceted curtain wall.

1 WTC's curtain wall has four surface articulations—the stainless-steel base at the substation, a ventilated glass curtain wall for mechanical rooms, 42 stories of clear glass curtain wall, and an illuminated crown similar to what SOM designed for its 2003 Time Warner Center. With Carpenter, SOM designed the base as a two-layer wall of stainless-steel, triangular-section wires, equally spaced and rotated along a support armature like a sleek, Minimalist picket fence. In daytime, sunlight bathes this facade, creating moiré patterns that activate the building along the sidewalk.

Farther up, the glass curtain wall appears to dangle from the building, as a recessed stainless-steel spandrel reflects light to the backside of the glass overhang (see the top of the wall section on the opposite page). At night, LEDs installed behind small columns reflect on the interior wire layer and transform the building.

Less apparent in the building are the structural and safety innovations that have already affected skyscraper design. Silvian Marcus, the project's structural engineer and the C.E.O. of Cantor Seinuk, designed

1. Plaza
2. Lobby
3. Con Edison substation
4. Loading dock
5. Vesey Street
6. Greenwich Street
7. Barclay Street
8. Washington Street
9. Typical column-free floor plate
10. Robust core
The Jenny Holzer LED installation (above) cantilevers 14 feet from the floor on a structure designed by Bill Baker, of SOM's Chicago office. The sumptuous lobby, which belies the fact that 7 WTC is a LEED Gold-rated core-and-shell office building (the first in New York), is finished in white and gray marble. A hanging glass wall (right), glass canopy, and an illuminated glass ceiling outfitted with red, white, and blue dimmable T5 fluorescent lamps fosters an atmosphere of smooth luminosity.
the original 7 WTC as a total steel structure, but this time around he
developed a robust concrete core
and a perimeter of redundant steel
columns—to address progressive
collapse concerns—that leaves
the interior completely open.

Although coordinating work
between two separate unions—for
concrete and steel—makes New
York projects notoriously difficult,
Marcus says the core approach
enhances safety. The perimeter
columns tie back to the core with
what he calls “outriggers,” trusslike
devices that free the columns to only
support gravity loads, thereby reduc-
ing their size and making the failure
of any given column less important
to overall structural integrity. Cantor
Seinuk plans to use this approach
for its work at Freedom Tower and
the other WTC skyscrapers.

In large part due to 7 WTC, the
International Code Council recently
added the requirement of an addi-
tional exit stair for buildings over
420 feet high. The stairs at 7 WTC,
brushed with intumescent paint,
are already 20 percent wider than
code requirements and exit directly
to the street, avoiding the lobby.

Commentary
No other Manhattan tower of recent
certainty comes close to the mesmer-
izing surface effects of 7 WTC, from
its startling base through its varieg-
ated reach to the sky. In terms of
sheer luminous exuberance, only
Norman Foster’s 2006 Hearst Tower
compares, but it’s so cut off from
the street to be merely slight and
chooses to reserve its best space—
the atrium—for employees. At 7 WTC,
the ground-level urban gestures—
including a dramatic Jenny Holzer
LED installation projecting phrases
through the lobby’s curtain wall and
into the plaza designed by landscape
architect Ken Smith—are generous,
considering Silverstein could have
filled the lot with structure. While
this project hasn’t relieved Childs
and company from continued public
criticism of Freedom Tower, it has
certainly added a significant artifact
to Manhattan’s unparalleled collection
doing skyscrapers.

H3 Hardy Collaboration
Architecture designed
a new home for the
New York Academy of
Sciences on the 40th
floor of 7 WTC. The
space, which opened
in October 2006, takes
its cues from the
academy’s interests,
including oversized
goal photographs of flowers
that line an office
north-south through
the floor. The flowers
were produced in
cooperation with
graphic designers 2x4.
The screen wall in the
lobby (top) illustrates
the New York street
grid, indicating the
academy’s previous
locations. The lecture
hall (above) affords
enviable panoramic
views of the city.
Two: SPORTS CITY TOWER
Doha, Qatar, United Arab Emirates

AREP and Hadi Simaan bestow an icon, with drama and engineering finesse, on a rapidly developing city in the United Arab Emirates.

By Sam Lubell

Architect: AREP, with Hadi Simaan—Etienne Tricaud, partner in charge; Bruno Sarret, project architect; Ali Dehbone, on-site architect; Eric Dussiot; Marie-Odile Bos; Alan Murray; Cyril Hugon; Ana Paula Vaz Correa; Stephane Mairese; Hadi Simaan Architects—Hadi Simaan, principal

Client: State of Qatar
Consultants: Arup (structural, m/e/p, acoustics, fire, wind and vibration analysis); ECART (interiors); Kevan Shaw Lighting Design (lighting, LED programming); Gilles Drossart (renderings)

General contractor: BESIX with MIDMAC

Size: 430,556 square feet
Cost: $175 million
Completion date: May 2007

Program
The 51-floor, parabolic-shaped tower, which served as a giant torch for the games last year, also includes other building components cantilevered from its concrete core: an 18-story hotel, a three-story sports museum, a four-story presidential apartment for Sheikh Hamad, a three-story rotating restaurant, and a two-story viewing deck at the top. Because of delays at the outset (including a change of contractor and architect), the architects had to realize the $175 million project in 18 months. The tower has not been able to attract an operator for its hotel, thus its interiors have not been finished.

Solution
AREP selected for the project in 2005, worked with a conceptual sketch by local architect Hadi Simaan, who had envisioned a structure whose tapering shape would enhance the presence of the flame for the Asian Games and contrast sharply with the flat desert.

Developed closely with structural engineers in the London office of Arup, the final form consists of a 3-to-6-foot-thick, reinforced-concrete cylinder (the core), varying from 40 to 60 feet in diameter, encircled with radiating networks of cantilevered steel beams on each floor of its building modules. The modules themselves are composed of steel columns, metal deckling, concrete slabs, and outer tension and compression ring beams, which support glass-paneled outer walls. The bottom of each module is covered with glass-fiber-reinforced concrete.

Beams, as well as steel struts tying all the structural components together, are bolted through the concrete core and hence are anchored into place, transferring vertical loads from perimeter columns and ring beams to the core.

Outside the modules, AREP suspended a taut, transparent steel-mesh cladding—giving the building its shape—mounted on a steel frame attached to the building’s outer ring beams. The gridlike mesh’s vertical spacing gets wider as it moves up the building, adjusting to increasing wind. It gets narrower on the south-facing side to adjust to increased sunlight. The building is 230 feet wide at the bottom, 85 feet high in the center, and 108 feet wide at the top.

A long tube for the flame is set
The 985-foot tower's top supports the flame component used during the Asian Games, as well as observation decks and space for a planned revolving restaurant. Tuned mass dampers keep the tower, entirely supported by its concrete core, from swaying too much in the wind.
1. Typical hotel room
2. Robust concrete core
3. Hotel elevators
4. Swimming pool
5. Fitness room
6. Spa
7. Hotel lobby
8. Secondary lobby
9. Kitchen
10. Loading dock
11. Equipment rooms
12. Restaurant
13. Hotel suites

The wider-spaced steel mesh at the pinnacle (above and top) allows enough wind to pass through to mitigate the heat effects of the tower's flame.
inside a 100-foot-tall, upside-down, aluminum-panel-clad cone, which is itself set inside a 230-foot-high steel diagrid frame. The frame is anchored at its bottom via a concrete frame reinforced with a circumferential ring beam that is attached to the core via a radial arrangement of concrete columns. AREP project director Bruno Sarret points out that high winds prevent the flame’s heat from causing a fire.

The planned lobby for the hotel is a 230-foot-high space, with a 3-story grand stair and marble floor that will have subtle lanes etched into its surface, reminiscent of a running track.

Commentary
The gargantuan building required some leaps of faith. For instance, the contractors, BESIX, were uneasy about the flame’s effect on the rest of the building until the day it was first lit. “They warned us, ‘You don’t want to end this thing on a bad note,’” says Sarret.

Although it is disappointing that the hotel has not been realized, the tower is easily the tallest, most dramatic element in a series of public projects—composing the 320-acre Sports City just east of downtown—that includes a new stadium, arenas, and a mosque. At night, a display of 4,000 LED lights, wired inside the frame, explodes in a series of colors and designs that produce exactly the effect they should: shock and amazement.
Three: MONTEVIDEO TOWER
Rotterdam, the Netherlands

Mecanoo transforms a postindustrial pier with a multifaceted residential tower in one of Europe’s most architecturally progressive cities.

By Penelope Dean

Sitting somewhere between the Erasmus Bridge designed by Ben van Berkel, the Euromast or “space tower” designed by H.A. Maaskant, and almost perfectly aligned above the twin black towers designed by Wiel Arets, a giant, rotating letter M floats on top of what is fast becoming Rotterdam’s crowded riverfront skyline.

It is not until one is moving south down Rotterdam’s central street—the Coolingsel—to cross the Erasmus Bridge that the rotating M’s “pedestal” finally comes into view: a tall, thin, gray-white-and-orange tower, clad with different materials, at the end of Rotterdam’s Wilhelmina Pier. Turning right and moving toward the end of the pier, this recently completed tower, designed by the Dutch architects Mecanoo, now appears as a series of superimposed volumes. And it is not until one actually enters the tower’s lobby that the giant letter M begins to make any sense: a map of Uruguay revealing the M not only as the initial for its capital city, but also the tower’s name—Montevideo—and, according to the architects, a “logo” to confirm “Rotterdam’s maritime tradition.”

Program
Commissioned by ING Real Estate and the Rotterdam Urban Planning Agency in 1999, Mecanoo’s Montevideo is one of several tall buildings planned for the Wilhelmina Pier area, part of Rotterdam’s old city harbor now free for development after port activities moved west, closer to the coast. Aptly labeled “Skyscraper City,” the area forms part of a master plan, designed by Foster + Partners in London, aimed at integrating commercial and residential zones with recreational and urban programs. As predominantly residential, Montevideo sits at the southern side of the pier adjacent to Hotel

Architect: Mecanoo Architecten—Francine Houben, director; Aart Fransen, technical director; Allart Jaffers, senior architect

Client: ING Real Estate

Consultants: ABT (structural); Schreuder Groep (m/e/p); Adviesbureau Peutz & Associates (environmental); Ineke Hauer, Rick Vermeulen (artists); Kats & Waalwijk Group (project management)

General contractor: BESIX

Size: 619,250 square feet

Cost: $120 million (estimated)

Completion date: May 2006

Sources

Elevators: Kone

Concrete formwork: Doka

ONLINE: Rate this project and access additional sources at architecturalrecord.com/bts/.

Penelope Dean is an architect and assistant professor of architecture at the University of Illinois at Chicago.
The east-west section of the nearly 500-foot Montevideo tower looks like an oversize serif font L, another “initial letter” bracketing the building up close, just as the M allegedly brands from afar. The tower’s prominent Wilhelmina Pier location (opposite) assures the M, designed by Rick Vermeulen, can be seen throughout the port city.
New York, the former Holland-America Line offices. Though just 43 floors, the architects claim Montevideo is the highest residential building in the Netherlands.

Solution
More in keeping with the recent tradition of Dutch dwelling design, Mecanoo developed a catalog of apartment formats, with different sizes marketed to accommodate a multitude of lifestyles and family types. The firm has developed 54 different types across 129 units.

Programmatically organized in section, the architects piled large flats with varying floor heights into the main tower: five levels of “Loft,” 20 levels of “City,” and 14 levels of “Sky” apartments, as well as a penthouse. Ten levels of “Water” apartments create a mansion-esque mix in the shorter tower that cantilevers out toward the water. The two towers connect through a five-story horizontal bar containing offices and public facilities, such as a swimming pool and fitness center.

Described by Mecanoo as a “vertical city” composed of “intersecting volumes,” at first glance Montevideo’s formal composition appears as the result of its programmatic organization. Yet given that
A combination steel-and-concrete structure helps to define the variety of facade materials (left) and breaks up the tower's overall volume. This is in contrast to the American preference for repeatable floor plates and uniform materials.

1. Main entrance
2. Lobby
3. Retail
4. Parking garage ramp
5. Swimming pool
6. Fitness center
7. "Water" apartment
8. Two-story apartment
9. Penthouse

PENTHOUSE FLOOR

TENTH FLOOR

THIRD FLOOR

FIRST FLOOR
Mecanoo designed 54 different types of apartments, including large loftlike units (left), as well as more conventional apartments with balconies facing the River Maas (bottom). A swimming pool on the third level (below left) is part of a larger fitness center open to the public. Befitting a luxury building, the 41st-floor penthouse includes its own private swimming pool.

The tower's outline does not directly relate to the extrusion of apartments in plan, the building's profile alludes to a volumetric logic motivated by structural systems and facade articulation. Indeed, it is the alternating construction of steel (the first two floors), followed by a "concrete climbing form" (27 floors), and back to steel again (14 floors), that enables the building to achieve its diverse spatial structure. The different cladding materials—prefabricated concrete, brickwork, and aluminum curtain walls—define each of the tower volumes separately. Only the facades' varying window patterns suggest the array of apartments within. The move away from what Mecanoo refers to as the repetitive "housing project"—a Dutch typology of identical flats accessed from external galleries—toward a more differentiated volumetric composition marks another formal shift: horizontality and legibility now give way to verticality and ambiguity.

Commentary
Perhaps what is most interesting about Mecanoo's Montevideo is the new kind of tower it adds to existing conversations about city skylines. As a slender aggregation of laminated volumes—a sushi roll without the seaweed wrap—it is a divergence away from the American norm of a fat-to-thin section of repetitive floor plates. Instead of breaking down volumetric form, as Skidmore, Owings & Merrill did in the 1973 Sears Tower in Chicago, with its thinning appearance via tapering floor plates as a function of real estate logic, or the stepped-back volumes of Hugh Ferris's 1930s envelope studies derived from Manhattan zoning laws, Mecanoo has simply constructed a collage of boxes. The approach may be best described as a new "visual" typology for the city—thinness—disciplined by vague compositional logics rather than those of context, setback codes, or economics. In what appears to be a more liberated design exercise, Mecanoo's Montevideo points toward the differences in design investment between the European and American high-rise.
For years our shearwalls have allowed you to meet structural demands without sacrificing freedom of design. Now all of your solutions are conveniently in one place—the new Strong-Wall® Shearwalls catalog. Consolidated technical information, structural details and design examples provide you with all the tools you need to make the best choices for your project. And our new Strong-Wall applications create new opportunities for two story structures. From bigger windows to smaller wall sections—you provide the artistic vision, we’ll provide the innovative products. Vision accomplished.

To find out how our products can help you in unexpected ways, visit us at www.strongtie.com or call 800-999-5099.
"Through the use of McGraw-Hill Construction's project database, combined with Project Document Manager and our existing management tools, we were able to integrate everything on a collaborative scale."

Shawn Pressly
Project Controls Engineer
Hill International
Introducing the new McGraw-Hill Construction ReproMAX Project Document Manager (PDM)

Across the entire project lifecycle, today's AEC professional relies on ReproMAX Project Document Manager (PDM)—your online answer to more efficiently manage the entire workflow process. And now with PDM integrated into our McGraw-Hill Construction Network® service, you have even greater opportunities to:

- Connect all your business tools
- Manage your project's bidding & communication
- Mitigate risk

Take control of your project documents. Take advantage of interoperability.
Find out more. View a demonstration today or call 1.866.239.4261.

Go to www.construction.com/documentmanager/
Stratos is the first of several innovative architectural sign systems that are part of our new Designer Series. Its unique top-loading modular format allows for quick installation and is easy to update. The choice of materials and colors are virtually limitless. The curved components can be customized as square, diamond or wavy. Like all of our Best products, Stratos is made from the finest materials and is fabricated to meet the highest standards.
Miracle on (and Under) Second Avenue

A NEW YORK CITY OFF-AGAIN, AND NOW ON-AGAIN, PUBLIC INFRASTRUCTURE PROJECT DEPENDS UPON INTENSE COLLABORATION BETWEEN ARCHITECTS AND ENGINEERS

By Sara Hart

ith derisive taglines like “the most famous thing that’s never been built” and “the line time forgot,” news this spring that New York City’s Second Avenue Subway (SAS) was about to start construction was met with nearly unanimous approval tempered by cautious optimism, despite the guarantee of years of unceasing construction affecting hundreds of thousands of Manhattan residents, institutions, and businesses. Public consensus acknowledged that the long-term advantages outweigh the short-term disruptions and inconveniences.

Predicted to cost $16.8 billion (in 2004 dollars), the mega-infrastructure project is the largest public-works undertaking in New York in 50 years. To be built in four phases, over an estimated 16 years, the new subway—also known as the T Line—will serve approximately 500,000 riders daily at 16 new stations along 8.5 miles of new track. It will relieve the overburdened Lexington Avenue Line, the only subway serving the East Side, which reportedly operates at 120 percent capacity.

Almost from the moment of conception in 1929, the project became the perennial victim of every 20th-century economic crisis and vagary of war. During the Great Depression, the project was scaled back and then postponed indefinitely in 1939. A new master plan was considered, then suspended in 1941 along with other nonessential public works, when the U.S. entered World War II. Another postwar scheme was shelved due to huge inflation experienced during the Korean War. Multiple iterations later, construction began in 1972, only to be abruptly halted as New York City teetered on the brink of bankruptcy.

Another 20 years went by, and finally the Metropolitan Transit Authority (MTA) and New York City Transit (NYCT) began the Manhattan East Side Alternatives Study. The goal was to recommend a course of action to reduce crowding and delays on the Lexington Avenue Line and create mass-transit accessibility for the far East Side of Manhattan. The study team compiled a list of more than 20 alternatives to resolve existing and future transportation issues, including the resurrection of the master plan for a new Second Avenue Subway.

In July 2004, the Federal Transit Administration (FTA) certified that the requirements of the National Environmental Policy Act had been satisfied for the Second Avenue Subway project. By December, preliminary engineering was completed for all four phases. Two years later, in April 2006, Extended and Final Preliminary Engineering was done. The FTA then authorized the MTA to begin the Final Design of Phase I. On April 12, 2007, the governor, other state and city officials, and several transit administrators broke ground for the fourth time since 1929 and declared the project under way. And they mean it this time.

CONTINUING EDUCATION

Use the following learning objectives to focus your study while reading this month’s ARCHITECTURAL RECORD/AIA Continuing Education article. To earn one AIA continuing education credit, turn to page 166 and follow the instructions.

Learning Objectives
After reading this article, you should be able to:
1. Discuss the history of the Second Avenue Subway project.
2. Explain the excavation methods that will be used to create the subway’s tunnels.
3. Discuss the project’s noise- and vibration-mitigation features.

For this story and more continuing education, as well as links to sources, white papers, and products, go to architecturalrecord.com/tech/.

It takes a big village to build a subway

Public infrastructure projects are by definition enormously complex undertakings, involving dozens of local, state, and federal agencies; community boards; arts commissions; and teams of architecture, engineering and construction consultants. Officially, the MTA and the NYCT are the clients. In that role, the MTA assembled a team to plan, design and engineer, schedule, and oversee construction of the phased project. This team, a DMJM Harris/Arup joint venture, is a complex, expansive architecture and engineering partnership. The principal players of the joint venture, representing all the design and engineering specialties, work under one roof under the authority of the NYCT’s Second Avenue Subway Project, an entity of the MTA Capital Construction Company.

“There are many stakeholders involved in every phase of planning and design,” says Anil Parikh, SAS program manager. “We conduct working groups with technical advisers, the design team, and user representatives to discuss constructibility, operations, and maintenance, and then investigate options, debating the pros and cons of each,” he explains.
1. The Second Avenue Subway Stations, whether vaulted or rectangular in profile, are column-free to the extent possible. This structural strategy will improve passenger flow, visibility, and security. In order to achieve the column-free structure without excessive cost or large beam depths, economical structural spans and spacing modules are incorporated into station design.

2. The underplatform and overtrack exhaust systems are central to the air-tempering and ventilation strategies. Exhaust ducts and fans will remove air from areas closest to the two largest sources of heat in the station—the brakes and car air conditioners. In the winter, by turning these exhaust systems off, enough heat will be retained within the station to render mechanical heating unnecessary.

3. During a fire, the mechanical system operates in an emergency mode and extracts smoke from the tunnel and underground stations. Simultaneously, the system provides fresh air to passenger egress areas, to create zones of higher air pressure and to minimize migration of smoke.

4. The lighting design for the Second Avenue Subway will improve the passenger experience with brightly lit walls, enhanced lighting at transition points, and the use of daylight, especially at entrances. Energy-efficient technologies, in concert with a station-wide lighting control system, will be incorporated throughout.

5. The new subway line’s signage will employ both fixed and variable messaging elements. The centrally controlled variable-messaging system will display updated train information and emergency information. Fixed and variable signage will be integrated into the architectural features to increase visual clarity and enhance navigation.

6. Through geometry and the strategic use of sound-absorptive materials, the stations will provide comfortable aural environments with a clear and intelligible public address system.
Although many alternatives are identified for every stage, all decisions must answer to a higher power—the assessments of the painstakingly researched environmental-impact statement. Because the SAS project is the beneficiary of federal funding, such an evaluation was required prior to construction in accordance with the National Environmental Policy Act. The client and the FTA recently completed the final environmental impact statement (FEIS). The document notes that although it is final with regard to starting construction, it can be amended as previously unaddressed issues or unanticipated complications arise.

Some of the many factors the FEIS takes into account are the project's potential effects on transit service and roadway congestion, and

THE PRINCIPAL PLAYERS, REPRESENTING ALL THE DESIGN AND ENGINEERING DISCIPLINES, WORK UNDER ONE ROOF.

social and economic conditions. It also considers issues such as air quality, noise and vibration, energy and natural resource use, and contaminated material disposal. Mitigation measures to reduce localized impacts are described in the document. These are requirements, not guidelines. Assessments are based on "reasonable worst-case scenarios," which means that while there may be alternatives for any given process, the FEIS evaluated the one with the greatest potential for disruption. The assumption is that approved alternatives, by definition, fall within the limits set by the FEIS for the worst-case scenario.

Between rock and a hard place

On-site blasting and excavating are the inaugural steps of most construction projects, and ground breaking usually proceeds without drawing much attention. In the case of the SAS, the sheer breadth and depth of the tunneling effort required considerable evaluation and detailed explanation in the FEIS. The document describes three approved tunnel methods—tunnel boring technology, cut-and-cover, and mining.

Some of the tunnels will be excavated using powerful circular boring machines that drill horizontally through the earth. The project will employ two types of boring technologies—a tunnel boring machine (TBM), for cutting through bedrock, and an earth-pressure-balance machine, to bore through soil. Although the street must be excavated in order to insert either type of machine at the desired depth, the process causes little additional surface disruption.
Most of New York City's existing subway system was built using the cut-and-cover method. Although it causes the most surface disruption of the three technologies, it is the easiest method for building a section of tunnel that is relatively close to the surface. This method involves digging trenches from the surface, holding back the surrounding earth with retaining walls, and constructing a frame to support a concrete or metal street deck. Cut-and-cover will be used to excavate more than half of the tunnels and to create entrances at every station location.

The third technique is mining, which will be used on portions of tunnel too short to make tunnel boring cost-effective, or for curved sections of the line where the radius is too tight for a TBM. To create tunnels using this method, contractors drill many small holes within a rock area and then place small amounts of explosives in each hole. Under carefully controlled and monitored conditions, explosives are detonated sequentially for short intervals of time, breaking the rock while dissipating the release of energy, lessening the potential for ground vibration at nearby structures.

When mining is done in soil, this so-called "drill-and-blast" process will not be necessary. Soil and rock can be excavated and removed using backhoes, bulldozers, or a clamshell shovel suspended from a crane.

Regardless of which mining method is used, shafts will be required to remove the excavated rock, soil, and debris. Cranes, small rail cars, and conveyors will be used to bring this spoil to the surface. Most of the excavated material will be clean crushed rock, which can be used to fill abandoned mines, build artificial reefs, reinforce bulkheads, and pave roads.

Architecture goes underground
While the tunnels are the conduits for transit services, they are also permanent volumes that define and confine the limits of the architectural and engineering efforts. Tunnel construction techniques yield two basic profiles for the station volumes—vaulted spaces created by the circular motions of the TBMs, and rectangular ones defined by the cut-and-cover method's soil-supporting slurry walls.

DMJM Harris, the architectural arm of the joint venture, has devised modular, transparent canopies at street level to define entrances, provide shelter, and create an openness to contradict the reality of descending into a cavern. Skylights will penetrate sidewalks, wherever feasible, to invite sunlight as far into mezzanines and platforms as possible. The subterranean experience will be enhanced by other factors, including way-finding strategies, temperature control, lighting, and acoustics.
SLENDERWALL®

Selected for Virginia's Tallest Building, 38 stories

/Westin Luxury Hotel & Residences

/Virginia Beach (under construction)

/Architect: BBGM

SLENDERWALL® is available worldwide from the finest architectural precasters through EASI-SET® Industries, licensor of precast concrete products. EASI-SET® Industries is a wholly owned subsidiary of SMITH-MIDLAND® Corporation, publicly traded as SMID. 54

Five “Must Have” Cladding Technologies Deliver Value.

Available only with the SLENDERWALL® panel system. www.sleenderwall.com

1 DURAFLEX 360°™

DuraFlex 360°™ - only precast to stud frame connection that allows 360° movement to isolate the concrete skin from structural stresses (wind, frame movement, expansion, contraction, and seismic shock). Preserves the structural integrity and water tightness of the wall. DuraFlex 360°™ has passed applicable ASTM and AAMA test methods including AAMA 501.4-2000.

2 SECONDNATURE™

Second Nature™ - only “Class A” Architectural Precast Concrete Brick finish with the quality level necessary for “Class A” commercial projects.

3 THERMAGUARD™

TheraGuard™ - only 100% thermal-break/air barrier precast system. The connection consists of thermal-break protection created by both the 1/2 inch air space between the concrete panel and stud, and the exclusive epoxy-coated stainless steel Nelson® anchor. The patented connection prevents corrosion and reduces thermal transfer by as much as 25%, providing a lifetime of heating and cooling cost savings.

4 LIFT-AND-RELEASE™

Lift-and-Release™ - only panel-landing system that makes the installation process faster & easier (19 min. per panel). Patent Pending

5 H₂OUT™

H₂Out™ - only secondary drainage, street-level, caulk joint leak detection system. Caulk leaks exit to the outside of the building & can be located within 20 ft of the leak whether your building is 5 days or 20 yrs old.

Call today for literature and design manual

EASI-SET® INDUSTRIES

New Dimensions in Concrete

Midland, VA 22728 - (800) 547-4045

CIRCLE 58 ON READER SERVICE CARD OR GO TO ARCHITECTURECONSTRUCTION.COM/PRODUCTS/
Acoustical integration is arguably the most challenging aspect of transit design. Sound has multiple air- and ground-borne sources—ambient crowd noise, public address announcements, mechanical noise, and track vibrations. Most of the attenuation and mitigation options involve intense architectural and engineering collaboration. "It's a totally integrated process," explains Kenneth Griffin, AIA, DMJM Harris's chief architect for the project. Griffin's team is designing the line's 16 new subway stations and several ancillary structures and is working closely with all the consultants. "We influence each other's strategies," he says.

For example, FEIS criteria calls for "comfortable and controlled aural environments," in which public address announcements are clearly intelligible. Acoustical engineers from Arup collaborated with the architects and NYCT communications engineers to investigate integrated options. Arup measured the acoustical conditions at existing stations to determine how current public-address systems work and assess the effectiveness of sound-absorbing finishes. They analyzed each link in the chain of sound transmission from the announcer's booth through the cabling infrastructure to the speakers and finally to station platforms, determining that the distortion that so often renders announcements unintelligible is cumulative. Back in Arup's in-house sound lab (March 2003, page 149), every factor that either improves or degrades the quality of sound is isolated and evaluated independently, so that the system can be designed and specified as a whole rather than sum of its parts.

To help control reverberant noise from the public-address system, Arup is recommending that the mezzanine and platform ceilings include sound-absorbing elements that are merged with the station architecture. "The effectiveness of sound-absorbing materials depends not only on how much sound they absorb, but also on where the materials are located relative to the noise source," explains Arup acoustical engineer Joe Solway.

The SAS public address system, currently in design development, will include a component for delivering verbal instructions in case of emergency, thus eliminating the less-effective alarm system in use at existing stations. With full-scale mock-ups, the architects are now exploring platform-edge and mezzanine-level "service carriers" that would house the system, along with lighting, closed-circuit TV cameras, and
The healthy glow of good design

WE KNOW GOOD DESIGN WHEN WE SEE IT. THAT'S BECAUSE AT Walker Zanger we have spent over 50 years pursuing a passion for good design expressed through stone, ceramic and glass tiles. Our goal has always remained constant - to present you with a dazzling array of products, thoughtfully designed to stand the test of time. Because you know good design when you see it, too.
cabling, into canopies. These overhead elements will allow contractors to avoid embedding electrical conduit in concrete, thus keeping this critical station infrastructure accessible for maintenance, explains Griffin.

In all aspects of design development, the architects are guided by 12 design principles that consider the interface between architecture and the myriad engineering, life-safety, and urban-design requirements. For instance, one of the design principles calls for a balance between station context and essential “elements of continuity.” These are “the physical elements that have a systemwide reference.” They are standard planning devices, such as structural grids and modular components, which can be repeated in all the stations to a degree that is practical. Whereas continuity is important to passenger orientation and comfort, it is critical to maintaining structures that are designed and built to perform well for 100 years. Building services, systems, lighting, and graphics must be integrated identically in each station, and the repetition of modular components allows efficient repair and replacement. The office walls of the DMJM Harris/Arup joint venture are plastered with studies showing this integration and design evolution to date.

In addition to the new subway stations, DMJM Harris is designing several ancillary, multistory structures at street level, which will house exhaust fans and other ventilation equipment serving individual stations and tunnels. The acoustical and mechanical engineers are working to ensure that fans, cooling towers, and handling units are designed with the necessary sound attenuation to reduce noise emission to the exterior and surrounding buildings. These measures become architectural concerns because the mitigation strategies can affect material choice and facade design. As preliminary renderings show, these unoccupied structures will receive the same level of architectural detailing as the subway stations, since their presence will similarly define the surrounding urban fabric.

Sudhir Jambhekar, AIA, principal at New York City–based FXFOWLE Architects, worked on the SAS for three years. Although the firm is no longer involved, the experience led Jambhekar to develop an argument regarding the architect’s role in large infrastructure projects, such as the SAS. “Architects assume that there isn’t much design opportunity in these building types, but that’s just not the case,” he insists.

Jambhekar acknowledges that organizational and management hierarchies can be more complicated than those applied to comparable commissions, such as highly specialized institutional projects. Infrastructure projects can take two or three times longer to complete, requiring a commitment of a decade or longer. Architects often work within large teams, which, in addition to the typical consultants, can include a maze of government agencies and regulatory commissions. However, in spite of these challenges, he makes a strong case for architects’ involvement: “Infrastructure influences quality-of-life issues more than people think, which is why we should feel obligated to participate.”

AIA/ARCHITECTURAL RECORD CONTINUING EDUCATION

INSTRUCTIONS

- Read the article “Miracle on (and Under) Second Avenue” using the learning objectives provided.
- Complete the questions below, then fill in your answers on the next page.
- Fill out and submit the AIA/CES education reporting form on the next page or download the form at archrecord.construction.com to receive one AIA learning unit.

QUESTIONS

1. The Second Avenue Subway will provide more access to what area?
 a. John F. Kennedy International Airport
 b. Central Park
 c. the East Side of Manhattan
 d. Long Island

2. Which of the following agencies or groups are the official clients of the Second Avenue Subway?
 a. the Federal Transit Administration and the Metropolitan Transit Authority
 b. the Federal Transit Administration and Manhattan East Side Alternatives
 c. the Metropolitan Transit Authority and New York City Transit
 d. Manhattan East Side Alternatives and New York City Transit

3. Because the Second Avenue Subway receives federal funding, all design decisions must meet the requirements of which?
 a. the Federal Transit Administration
 b. the National Environmental Policy Act
 c. the Manhattan East Side Alternatives Study
 d. the Federal Advisory Committee

4. The Final Environmental Impact Statement considers the potential effect of all except which?
 a. best-case scenarios
 b. noise and vibration
 c. roadway congestion
 d. social and economic conditions

5. The approved excavation technologies for the project are all except which?
 a. tunnel boring technology
 b. cut-and-cover
 c. mining
 d. water drilling

6. A boring machine usually causes little surface disruption, except when?
 a. the existing infrastructure is old
 b. the ground above is densely occupied
 c. the street is excavated to insert the machine
 d. it is used to bore through bedrock rather than soil

7. When tunnels are mined using the “drill-and-blast” method, explosives are detonated sequentially for short periods of time for which reason?
 a. to lessen the potential for ground vibration at nearby structures
 b. to pave the amount of rock to be removed by bulldozers
 c. to keep air flowing through the shafts
 d. to divide the excavation spoil equally among the individual conveyor cars

8. An earth-pressure-balance machine is used to perform which operation?
 a. bore through bedrock
 b. bore through soil
 c. remove spoil from the excavation site
 d. create curved sections of the subway line

9. The overhead “service carriers” that the architects are designing will incorporate which?
 a. a public address system
 b. lighting
 c. closed-circuit TV
 d. all of the above

10. DMJM Harris is designing multistory above-ground structures that will house which?
 a. offices for Metropolitan Transit Authority officials
 b. ticket vending machines
 c. exhaust fans and ventilation equipment
 d. maintenance equipment

AIA/CES Credit: This article will earn you one AIA/CES LU hour of health, safety, and welfare credit. (Valid for credit through August 2009.)

Directions: Select one answer for each question in the exam and completely circle appropriate letter. A minimum score of 80% is required to earn credit. Take this test online at http://archrecord.construction.com/continuing/default.asp.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>3.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>4.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>5.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>7.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>8.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>9.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>10.</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Middle Initial or Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIA ID Number

Completion date (M/D/Y): ____________________________

Check one: □ Payment enclosed. (Make check payable to Architectural Record) For customer service, call 877/876-8093.

Charge my: □ Visa □ Mastercard □ American Express

Card# ____________________________

Signature _______________ Exp. Date _______________

Check below:

□ To register for AIA/CES credits: Answer the test questions and send the completed form with questions answered to above address, or fax to 888/385-1428.

□ For certificate of completion: As required by certain states, answer test questions, fill out form above, and mail to above address, or fax to 888/385-1428. Your test will be scored. Those who pass with a score of 80% or higher will receive a certificate of completion.

Material resources used: Article: This article addresses issues concerning health and safety.

I hereby certify that the above information is true and accurate to the best of my knowledge and that I have complied with the AIA Continuing Education Guidelines for the reported period.

Signature ____________________________ Date _______________

{sculptural form _ lighting}

You light an ordinary space with ordinary fixtures. But ordinary isn’t in your design vocabulary. Your space surprises, and so should the overhead lighting. We offer an extensive catalog of linear fixtures, including our new Aparia, M7 and P-40 pendants, that go far beyond the basics. Meticulously sculpted from a range of intriguing materials, and delivering the highest levels of optical performance. For extraordinary lighting visit our website at prudential.com.

Light creates Life. Create with Prudential Ltd.
WARPO™
VISUAL STEALTH ILLUMINATION
A concept long overdue yet one that is light years ahead of its time.

CONTACT YOUR LOCAL AGENT FOR A PRIVATE SCREENING
PRESENTED BY KIM LIGHTING A DIVISION OF HUBBELL LIGHTING, INC.

WP9 KIM LIGHTING
Site/Roadway • www.kimlighting.com • 626.968.5666

CIRCLE 61 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Designs that move bodies and imaginations

BRIEFS

Spring is awards season, and this year as usual the lighting-design industry honored its brightest accomplishments and most promising newcomers with a series of prizes. The International Association of Lighting Designers, for example, recognized 20 honorees at its annual International Lighting Design Award Winners program in May. The highest winner—recipient of the association’s Radiance Award—was Karou Merde, of Tokyo-based Lighting Planners Associates, for the Chino Cultural Complex, in Nagano, Japan. The project is the world’s first cultural facility that includes a library, concert hall, and gallery along with an existing train station. As a counterpoint to the project wins, the Lightfair Innovation Awards teased out the best products from 139 entries. Top of the heap: the ARC Keeper Arctic 175 HID Backup Ballast from the Bodine Company, which earned Most Innovative Product of the Year. The product prevents lamp extinction during voltage disruptions by catching and maintaining the arc of one 175-to-200-watt, metal-halide pulse-start lamp for up to two minutes. The ORUS Roadway Luminaire from North Star Lighting, Luxeon Rebel from Philips Lumileds, and Alto II T8 Lamps from Philips Lighting Company also won special honors for design and technical excellence. The Illuminating Engineering Society New York Section presented Cline Bettridge Bernstein Lighting Design with its Award of Excellence for 7 World Trade Center, citing the firm’s clever masking of the transformer walls at the building’s base. New York City locals also paid attention to another June event, honoring the designers involved in an even more substantial Big Apple landmark: Kevin Adams won a Tony Award for best lighting design of a musical for Spring Awakening, a first-time use of CFLs on Broadway; Brian MacDevitt, Kenneth Posner, and Natasha Katz won best lighting design of a play for the Tom Stoppard trilogy The Coast of Utopia. D.S.

S

idewalks, plazas, highways, bridges: With a few exceptions, infrastructure usually plays the strong but silent type. But no longer are civic engineering works simply taking people from point A to point B. Designers of architectural lighting are redefining this necessary connective tissue with moments of poetry and delight.

For example, the developer of a Los Angeles apartment building called Met Lofts asked for a piece of art for the exterior of the building. The tech-savvy firm Electroland used the commission as an opportunity to inject a dose of fun and commentary into the streetscape, giving pedestrians control of the lighting sequence on the building’s western elevation. It’s a cheeky take on surveillance, an activity for the denizens of L.A.’s South Park neighborhood, and a call to animate the sidewalks of the car-centric city.

In the Yangpu District of Shanghai, China, artist Zhong Song deployed lighting design to invite pedestrians to enjoy Wu Jiao Plaza. But his work did not tackle a perceived problem so much as perform surgery on an open wound. A new highway overpass had effectively ruined the plaza, injecting a dark, threatening presence just as factory closures were siphoning people away from the area. By wrapping the overpass in a Futurist-curved-metal skin embedded with LEDs (below left), and performing an extreme makeover on the plaza’s other features, Zhong transformed the overpass from overbearing to engaging and encouraged Yangpu’s remaining residents to repopulate the zone.

The Langeais Suspension Bridge has had no problem in attracting users. Tourists flock to the city, which sits on the banks of the Loire River in France, to visit its famous 15th-century château. As part of the bridge’s reconstruction, acclaimed 32-year-old lighting designer Sylvain Bigot cast the bridge in a moody blue, accented by deep shadows and white light. The gestures underscore the bridge’s architectural similarities to the château and bring all of Langeais into the tourist experience.

While their makers’ motivations differ, these projects underscore infrastructure’s artistic potential. As travel between destinations becomes its own event, transportation networks have employed striking new media to create provocative design. David Sokol
To reanimate a Shanghai neighborhood, Zhong Song wraps an obtrusive highway overpass in metal and light

By Andrew Yang

It's never easy to make transportation infrastructure look good. In the United States, typical strategies include planting flowers within a rotary; erecting banal, noise-blocking barriers along freeways; and in many urban areas, doing nothing at all. But in China, at Wu Jiao Plaza in Shanghai's Yangpu District, the artist Zhong Song created an installation that dynamically melds architecture with lighting.

The Yangpu District was until recently a thriving manufacturing neighborhood. But around 2003, factories began abandoning the area for less-expensive industrial zones in the countryside. Though unrelated to the loss of manufacturing facilities, the city of Shanghai started constructing at about the same time a series of roadways to connect different districts. One such project included a new highway overpass bisecting the center of Yangpu and one of its main public spaces. The underbelly of the overpass cast a dark shadow (literally and metaphorically) on Wu Jiao Plaza, a formerly inviting gathering place.

Andrew Yang is a design journalist currently based in Shanghai. He serves as the design consultant for 100% Design Shanghai, the third edition of the annual furniture and interiors fair that also takes place in London and Tokyo.

Project: Wu Jiao Plaza, Yangpu District, Shanghai, China
Design: Zhong Song Design Consultancy
Architect: Jing Ye Design and Research Institute
Lighting: Lai En Lighting Consultants
In daylight, Zhong Song's installation above Wu Jiao Plaza appears like a looming UFO (opposite), while its nighttime LED displays emphasize the architectural form or treat it like an illuminated canvas (inset, left).
To rectify the situation, local government officials decided to spruce up the intrusion. So in 2003, they hired Zhong to design a sculpture for Wu Jiao Plaza based in part on a piece, Light of the East, that he had completed in Pudong in 2000 with the artist Chen Yifei. One of Zhong’s large, architectural-scale sculptures, Light of the East is a giant sundial made of a needle piercing a disc. But for Yangpu, he proposed that the government reinvent the urban fabric of the area, not just add another monument to the plaza.

The site is not far from Fudan University and several colleges, explains Zhong. “The municipal government wanted to make it an active space, but the highway overpass splits it in two,” he says. “The idea was to bring it back to the way it was”—a place of pedestrian movement and outdoor activities.

Zhong engaged the site’s knotty condition. “There are five roads leading to the plaza, and then a highway overpass on top, and a subway line underneath,” he continues. “There are three different levels of infrastructure, creating a complex fabric that affects the pedestrian nature of the area. So, the question was, how do we add the pedestrian element so people will animate the five different streets?”

To accomplish this task, the artist enveloped the 105-foot-wide overpass in an oval steel frame clad with aluminum. Measuring 348 feet long, 157 feet wide, and 82 feet tall, it cloaks cars speeding along the overpass.

“The government asked me to do a sculpture initially,” Zhong says. “But I told them we need to do it differently. So we made it look like a spaceship, a UFO,” he explains. The steel-and-aluminum armature glints in sunlight, while its skin appears to change from gold to silver under a cloudy sky. Inspired by these shifts, Zhong devised a system of Eco-controlled LEDs, arranged in a grid around the structure, and choreographed them to project an array of changing colors at night. Eventually, artists will be invited to program different lighting environments into and onto the installation’s large curved surface.

By making the underside of the overpass a more attractive space for pedestrians, Zhong hopes to draw visitors into the plaza. To activate this interstitial zone, he also relandscaped pedestrian circulation, removing unnecessary obstructions such as poorly placed trees and planters, and regulating print advertisements so they are less graphically prominent. His office also redesigned subway entrances so they are glass-encased steel tubes shooting out diagonally from beneath the ground, which echoes the sci-fi character of the installation suspended above the plaza.

The scope of the project is expansive and continues to grow. The plaza hosts a temporary stage with bleachers for concerts and other occasions, for example. “We hope this will be a space for people,” Zhong says. Future plans include projecting light onto adjacent buildings and programming it to accompany the event of the moment. That way, Zhong adds, “The people activate the plaza and it becomes a real social space.”

Emphasizing the effects achieved, not the tools used, is part of Zhong’s approach to art. As he notes, “When we watch a movie, it does not matter what movie projector is used. What we’re watching is more important.”

ONLINE: To view additional images, see a complete list of sources, and to rate this project, go to architecturalrecord.com/lighting/. Submit your lighting project to construction.com/community/gallerylist.aspx.
Lighting brings architecture to life.

Let Cooper Lighting illuminate the details of your vision.
Innovative thinking is one of our greatest assets. Our extensive offering of unique architectural products bring limitless lighting solutions from one source.
See for yourself at www.cooperlighting.com

www.cooperlighting.com
HOVER CRAFTS.

Sleekly sliding close to the surface, Mantaray at 16 inches by four, and sublime Miniray, just 12 inches by three, deliver stunning illumination of monuments both artistic and architectural. Delightfully inconspicuous, their low profiles and simple forms make them ideal for landscape use. From Gardco. The natural choice.

Enlighten your next design at www.sitelighting.com.
Electroland turns an apartment-building facade into a billboard for pedestrian movement.
As pedestrians approach the Met Lofts lobby, they interact with an illuminated sidewalk matrix (opposite). A grid of LED squares on the building's west facade recreates lighting patterns people produce (below) or random designs (below right).

By David Sokol

To the designers at the Los Angeles–based firm Electroland, modern life is a video game. Partner Damon Seeley, who founded the firm with Cameron McNall, expands on the metaphor: “There’s a vast network of electronic information surrounding us, and we’re navigating and participating in it all the time.”

That viewpoint has informed the work of Electroland since its founding in 2001, when McNall and Seeley collaborated on the installation RGB for the reopening of SCI-Arc. For that project, they mounted lights in 81 windows of the architecture school’s new home, a converted train depot, and people could illuminate them by calling a particular number on their cell phones and using their keypads to control the sequence of red, green, and blue. The communication device effectively became a joystick for controlling architectural and urban space.

The response to RGB was overwhelmingly positive, Seeley remembers, and the work grabbed the attention of local real estate developers in particular: “For them, it’s really about enhancing the excitement of the place they are trying to make,” Seeley says. Among Electroland’s suitors was Forest City, which invited the firm to compete for a Percent for Art project for Met Lofts, a seven-story apartment building designed by architecture firm Johnson Fain and planned for the South Park neighborhood of Los Angeles.

Electroland won the commission in October 2002, and its work, entitled EnterActive, was completed concurrently with the building in 2006. The project offers a fresh translation of McNall and Seeley’s perception of the video-game world: Instead of cell phones, EnterActive uses passersby themselves, transforming them into actors in an electronic game board.

The installation comprises two main elements. The first is an array of electronic tiles that sits just outside the entrance to the Met Lofts lobby and serves as the interface with pedestrians. Electroland set a riser system into the surrounding concrete, then placed a grid of 176 16-inch-square tiles within it. Each tile is a sandwich of fritted glass and plastic that holds 96 red LEDs and has four compression sensors and a microcomputer on its underside. When someone steps on a tile, the sensors and microcomputer send data to a master computer located in the lobby. That computer in turn signals the tile to illuminate. A pedestrian can stroll across the array like Michael Jackson singing “Billie Jean,” the sidewalk lighting up with each movement.

Or he or she could choose to land on a “trigger tile,” a randomly placed illuminated square that, when touched, initiates one of five patterns (such as a twinkling field or a spinning circle of light) that decorate the entire matrix. “The master computer looks at the arrangement of people on the tiles holistically, then decides which illuminated tiles should be turned off,” Seeley explains. The result is a playful give-and-take between man and machine: A participant can “push” the twinkling field out of his way, leaving only darkened tiles in his wake, or he can discover a circle of light spinning around him.

Besides feeding back to the tile array, the master computer links to EnterActive’s second major component: a grid of illuminated squares mounted on the building’s west elevation. While the facade display is more truncated than the sidewalk array, Electroland’s proprietary software translates the game board’s human movements and computerized patterns into supergraphics flashing on the side of the apartment building. Seeley says that players detect the correlation between themselves and the building face, and understand their influence on the urban landscape. Observers do, too, because “there’s something very human about the motion [on the illuminated grid],” he says, “of the way people start and stop and hopscotch on it. It’s very hard to fake that with a computer animation or preprogrammed playback.”

Seeley adds that he and McNall also took care to integrate EnterActive with its host. The facade installation, for example, echoes the fenestration of Johnson Fain’s design. Even more pragmatically, the building includes all the necessary conduit for connecting the installation to the master computer, and each floor contains a connection point for linking the exterior wires to the interior conduit. The vertical grid itself comprises squares of 168 LEDs mounted behind acrylic windows and framed by aluminum extrusions, which slide into bracket-mounted rails.

EnterActive is enjoying the same reception as its SCI-Arc forebear. As people pour out from an evening event at the nearby Staples Center, for example, the installation inevitably experiences a flurry of activity. While the artwork “gets back to this idea of a vast network of information out there,” Seeley says, “our motivations are really about creating fantastic experiences for people,” especially in Los Angeles, where public spaces could benefit from a sense of whimsy and play.

Playful for the pedestrians, sure. But isn’t EnterActive a recipe for insomnia for Met Lofts’ residents? Electroland solved that, too. Although the lumen output of the facade-mounted LEDs is five times that of the sidewalk interface, the aluminum extrusions holding them in place shield the diodes’ red shine from apartment dwellers’ eyes.

ONLINE: To view additional images, see a complete list of sources, and to rate this project, go to architecturalrecord.com/lighting/. Submit your lighting project to construction.com/community/gallerylist.aspx.

Project: EnterActive, Los Angeles
Installation designer: Electroland
Architect: Johnson Fain Partners

08.07 Architectural Record 177
architectural arealighting

For more information on our contemporary outdoor luminaires or any of our other broad range of products, see us at

www.aal.net

Quality ■ Innovation ■ Efficiency
For a medieval French city, Sylvain Bigot dresses the Langeais Suspension Bridge in majestic blue light

By Robert Such

Sylvain Bigot jokes, "I'm the bridge lighting designer." Bigot, principal of Neo Light, a firm in Joué-lès-Tours, France, has illuminated the Saint Satur Viaduct and the Pont de Montrichard, for which he was awarded first prize in the 2004 Light Competition, which is overseen by the French Ministry of Culture. This year, he earned the same honor with his scheme for the Langeais Suspension Bridge over the Loire River.

A bridge has connected the French town of Langeais to the municipality of Chapelle-aux-Naux since 1849. Its current incarnation has spanned the Loire River since 1950, yet recent reconstruction work was required to correct problems with the structure. Original builders Baudin-Châteauneuf replaced structural elements in the deck and the suspension cables in 2005. Concurrently, government officials held an open competition to implement a lighting scheme, for which Bigot proposed blue atmospheric lighting and bold shadows to highlight the bridge's form and texture. He won the job in May 2006, and realized the design six months later.

Bigot negotiated two inspirations in his work. In response to the Loire's calmness, he determined to create "a very quiet image of the bridge," he says. The architecture of the structure, itself inspired by the renowned 15th-century Château de Langeais, also influenced his direction. Four pointed arches, for example, are a direct reference to the château and provide an impressive entrance to the town. "Going through the entry," Bigot says, "is like going through the château." His choice of predominantly blue lighting—"the color of royalty"—reinforces the effect, and mimics the blue of the water at sunrise. To pick out the five decks suspended between the bridge's four reinforced-concrete towers, Bigot installed 150 blue, single-watt LEDs on the decks' sides.

At the top of each tower, a gallery of narrow arches is lit with metal-halide lamps equipped with blue filters. Suspension cables, however, pick up only blue spill from light hitting the gallery arches; Bigot explains that highlighting the cables would have been too commonplace a gesture, or "déjà vu."

Up-down metal-halide LED luminaires placed 11 feet above the roadway act as street lighting and also brighten each tower archway. In similar double duty, Bigot fixed white LED floods to the underside of the deck to accent the turrets' circular bases, and used a narrow-beam white uplight to graze the turret wall, revealing wall texture. Wide-beam metal halides underneath the deck bathe the bridge supports in blue light.

Fear of déjà vu propelled Bigot to add a temporal finesse to the bridge. During the week, a timer switches off the white turret lights. Full illumination on Saturdays and Sundays breaks the visual monotony and welcomes Langeais's numerous weekend visitors.

Or, perhaps, educates them: Bigot calls his design for the Langeais "a dramatic and poetic scene," which he attributes to its play of shadows and light. "I like the light," he says, "but I prefer the shadow. It's necessary to understand the volumes and the forms."

Robert Such writes about and photographs design for publications around the world.

Project:	Langeais Suspension Bridge, France
Lighting:	Neo Light
Client:	Conseil Général d'Indre et Loire
Contractor:	Citées

08.07 Architectural Record 179
Featuring: access LIGHTING

- Shop Online at LightingUniverse.com
- Browse Over 500,000 Brand Name Choices
- Choose from Over 300 Manufacturers
- FREE Shipping
- Special Trade Pricing
- Project Management Tools

Lighting Universe

1-800-801-2027

CIRCLE 65 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Lighting Products

This year marked the debut of the biennial Euroluce exhibition at the new Rho-Pero fairgrounds in Milan. Exhibitors made the most of the occasion by creating fantastic booths that put clever and often futuristic fixtures center stage. Rita Catinella Orrell

▲ Lane of light
Lane, designed by the Swiss-Argentinean designer Alfredo Häberli, is a new family of linear lamps that creates a soft, diffused lighting effect upward and downward on the wall. Made of extruded and die-cast aluminum, Lane lamps are designed in various lengths according to the source of light they contain (150-watt halogen, 39-watt, 54-watt, or 90-watt T5 linear fluorescent, or 54-watt T5 linear fluorescent). The fixture is also available in a version with an integrated acoustic diffusion system or with two LED spots for direct light for reading. Luceplan, New York City. www.luceplan.com CIRCLE 209

▲ Missing link
In addition to a new fixture by Foster + Partners, Nemo (the lighting brand of Poltrona Frau Group) introduced the Chain desk lamp by Ilaria Morelli. The easily foldable lamp offers widespread LED illumination, the intensity of which can be regulated by a stroke of a finger. With a body and base of aluminum and joints made of fiber-strengthened plastic, Chain is available in a polished or pearl white aluminum finish. The light measures 21.7" x 27.5" when fully open (left) and 2.75" x 10.6" when closed (right). Illuminating Experiences, Highland Park, N.J. www.nemo.cassina.it CIRCLE 211

▲ Fields of light
Fields, designed by Vicente Garcia Jimenez, was inspired by the aerial panorama of the fields in the designer's homeland of Mancha, Spain. The lamp is composed of white/ivory or red/orange methacrylate and aluminum sheets that diffuse the light and create a range of lighting effects on the wall. Fields is ideal for illuminating both large and small areas, according to the number of elements used. Lightology, Chicago. www.foscarini.com CIRCLE 214

▲ Bioluminescence
Flora, designed by the London-based architecture and design firm Future Systems, is an organic interpretation of the traditional arch floor lamp. The lightness of the lamp's polished aluminum body is made possible by the latest hydroforming technology used for bicycles and racing equipment. An additional component frees the lamp from the base, allowing it to be installed on any horizontal surface. A diffuser in opal blown glass produces a soft light source. FontanaArte, New York City. www.fontanaarte.it CIRCLE 212

▲ Flexible tubular fixture
Initially designed as a lighting solution for subways, stations, and parking lots, the tubular iSign fixture also works well in spaces ranging from offices to retail, including exterior-interior borderline installations. iSign is available in surface-mounted, wall-mounted, horizontal and vertical suspended versions, and with individual or double modules. The fluorescent T16 lamp comes with a polycarbonate exterior in 3" or 4.5" diameters, two lengths, and monolamp or bilamp versions, including an RGB version with DALI control gear. iGuzzini, Recanti, Italy. www.iguzzini.com CIRCLE 213
Build With Us

For decades the National Building Museum has inspired children and families to learn more about building, construction, design, and engineering. From our family festivals and our exhibitions, to our school programs and our curriculum kits, we build enthusiasm about skyscrapers and homes, bridges and neighborhoods, and all of the extraordinary things between.

Lighting Products While not every exhibitor displayed LEDs at this year's **Lightfair International**, held in New York City in early May, the energy-efficient systems were the stars of the show. Below we highlight both LED and non-LED standouts. R.C.O.

Modular mindset

Marrakesh is a new modular LED lighting system that is ready to ship from Mindspring. Inspired by Mediterranean Art, the modularity of the energy-efficient system allows for ease of assembly and artistic freedom. An unlimited number of modules can be combined, giving the designer total flexibility in terms of size and shape; for example, stacking two completed units can create 3D designs. The completed unit can be suspended from the ceiling or wall or be incorporated into the flooring, Mindspring, Taipei, Taiwan.

[www.mindspring-lighting.com CIRCLE 215](http://www.mindspring-lighting.com)

Gears of light

The three-armed Gear 3 fixture, designed by Xenon Architectural Lighting and Carsten Kielowsky, works well solo or in a series. The light features an aluminum body, a white or gray finish, and a satin-finished acrylic cover. Three 14-watt dimmable lamps provide a gentle, even illumination of the surrounding area, while the three-point cable suspension and the transparent 79"-long power cable make adjustments simple and flexible. Xenon Light, New York City. [www.xal.com CIRCLE 216](http://www.xal.com)

Small profile track

Tangent is the smallest profile line-voltage track-lighting system on the market, according to Lightolier. Tangent combines extruded aluminum and clear polycarbonate into a low-profile track system that utilizes low voltage MR16 and T4 bipin lamps, as well as line-voltage ES16 and G9 lamps. Ideal for commercial, retail, and residential applications, Tangent can be used in straight run arrangements or bent into architectural curves. Unlike other systems, Tangent's "side-by-side" busbar design allows the track to be surface-mounted flush to ceilings and walls. Lightolier, Fall River, Mass.

[www.lightolier.com CIRCLE 217](http://www.lightolier.com)

Edgy new LED modules

Linearlight Multi Flex LED modules are ideal for edge lighting transparent materials and provide a solution for precise backlighting of complex contours. The modules have a service life of 50,000 hours and provide an alternative choice for indoor or outdoor linear applications such as cove lighting, refrigeration cases, and pathway marking. The LEDs are also suited for lifesaving/rescue sign lights and commercial signs, as well as marking contours such as escape routes, borders, and stairs. Osram Sylvania, Darvers, Mass. [www.sylvania.com CIRCLE 218](http://www.sylvania.com)
From the innovators in asymmetric lighting ... energy efficient, high performance luminaires to enhance any architectural project.
Lighting Products Lightfair International

Finding the way in the dark
At the show, Philips launched a range of LED fixtures including a Linear luminaire (above) that can illuminate the facades and surfaces of buildings, bridges, monuments, and other structures with curtains of light. With 55 to 65 lumens of light output, StumbleLight (right) is a motion-activated night guiding light designed to turn on when a hotel guest steps out of bed, preventing the need to turn on bright room lighting that could disrupt a full night’s sleep. Philips, Somerset, N.J. www.philips.com CIRCLE 219

LED panel displays
The LC series is a semitransparent, modular system of LED panels, ideal for displaying film, digital images, and graphics for stage, TV studio, and commercial applications. The extremely bright units offer true RGB possibilities and feature a calibration system that ensures output is always balanced and uniform. The 39.4’-long system is 4.3’ wide and comes in a 39½’ or 79’ heights. A Genlock feature prevents light-flicker in TV applications, and units can be evenly joined for a seamless image. Martin Architectural, Sunrise, Fla. www.martinarchitectural.com CIRCLE 220

Health-care chart/reading lights
Circadian LED Series is a new family of LED nightlights and chart/reading lights from Cooper Lighting that offer an energy-efficient, low-glares solution for aiding night-time navigation. The night-lights feature white, red, or amber LEDs, that bring low-level illumination to small areas without disturbing sleep. Recent studies have found that these colors can complement a person’s circadian rhythm, says the manufacturer. Cooper Lighting, Peachtree City, Ga. www.cooperlighting.com CIRCLE 221

Quicker install for back lighting
The Tetra PowerGrid LED lighting system addresses the need to simplify and speed the installation of energy-efficient, high-brightness LEDs in large-scale back-lighting applications such as cabinet and box signs. The system features an easy-to-handle, interlinking module design. Lasting up to 50,000 hours, the system delivers four times the rated life of a standard T12 HO fluorescent systems (12,000 hour median life rating). Available prewired, it also consists of fewer parts than standard fluorescent systems. Lumination, Cleveland. www.led.com CIRCLE 222

For more information, circle item numbers on Reader Service Card or go to architecturalrecord.com/products.
There is no substitute for Integrity.

TRE'O®
Architectural Digital Lighting

The significance of the TRE'O® family of performance architectural digital lighting is based upon technology and long term reliability: the convergence of science, design and sustainability.

Imagine multiple optical and white light temperatures, dimming, static color and RGB, numerous adjustable mountings and the Insight standard palette of finishes offered with the highest lumen packages currently available in a linear configuration. All provided with a 2 year warranty.

TRE'O® represents the most complete selection of digital LED linear lighting: what the architectural design community had in mind!

For more information, please contact your local Insight representative. 505.345.0888

www.insightlighting.com
Pilkington Eclipse Advantage™ Reflective Low-E Glass

There was a time when architects could choose glass by color alone. Then along came Low-E, solar heat gain considerations, and all the inherent problems and compromises of soft coats. Pilkington Eclipse Advantage™ Glass, is the world’s first pyrolytic reflective Low-E. An innovative Low-E glass that combines low emissivity with solar control, high visible light transmittance and glare control. For more information or glass samples, contact Pilkington at 800 221 0444, or visit www.pilkington.com.

Pilkington Building Products North America
811 Madison Ave., P.O. Box 799 • Toledo, OH 43697-0799
Main Office Phone: 419 247 3731; Fax 419 247 4517
E-mail: building.products@us.pilkington.com • Website: www.pilkington.com
©2003 Pilkington. Eclipse Advantage™ Glass, Arctic Blue™ Glass and EverGreen™ Glass are trademarks of Pilkington.
Product Focus Glass & Glazing

Our roundup this month includes glass partition systems, a blast-resistant curtain wall, and slabs made from 100 percent recycled glass. For the latest glass and glazing products and technologies, visit GlassBuild America, held this year from 9/10 to 9/12 in Atlanta. Rita Catinella Orrell

A rendering showcases the single-layer trapezoidal geometry of the dome (above). The enclosed dome opens up the casino’s pool area to the sky (above right). Novum’s KK-System makes up the 3D ribs for the structure (right).

Edge-clamp glass system and other technologies lighten up a casino’s glass dome

Working with architectural structure and cladding specialists Novum Structures was a safe bet for the architects of an extension to Harrah’s Casino and Resort in Atlantic City, New Jersey. Novum, a full-service specialty contractor with almost 1,300 projects under its belt in the U.S. alone, worked with project architects Friedmutter Group to engineer and design a dome above a pool area that would be as transparent and economical as possible, while working within a tight time frame. Located on the New Jersey coast, the casino’s dome needed to meet codes for both hurricane-force winds and heavy snow loads. “I don’t remember having to look at both in the same project before,” says Novum president Ian Collins.

The resulting design is a 208'-wide and 50'-high dome that is nearly seamless to the sky above. Normally, such a large span would require a double-layer support structure with a heavy glass skylight system superimposed over the top. To avoid this situation, Novum used the glass structurally and utilized its BK-System of structural components which gives single-layer capability. The system was used along with Novum’s KK-System, which makes up the eight ribs that support the trapezoidal glass system. The choice of trapezoidal rather than triangular glass helped the team keep the cost of the project down. Novum’s ECG-System (edge-clamp glass) holds the glass at its edges with a minimum of clamping devices. Each glass panel was then sealed to adjoining panels with silicone caulk over a 3/8” joint. “Most domes can really thrust outward when they are loaded, or you can contain that thrust within the dome itself, and that’s what we did,” says Collins. “The whole dome is basically supported at eight locations, which is quite something.”

Novum’s three main facilities collaborated together on the dome: It was engineered in Germany, fabricated and project-managed in Wisconsin, and a China facility provided the glazing system and some of the connectors. Harrah’s opened the pool area Memorial Day weekend—15 months from conception to completion. The fast schedule, desired by the casino client, was only possible due to the close collaboration between all of the design partners, says Collins. “To do something that big in 15 months, you need to have a lot of cooperation.”

Novum Structures, Menomonee Falls, Wis. www.novumstructures.com

For more information, circle item numbers on Reader Service Card or go to architecturalrecord.com/products/.
Glass & Glazing

Custom glass blocks clad memorial
Schott supplied the 15,600 glass blocks for the memorial that opened last March in Madrid (below) to pay tribute to the victims of the 2004 train bombings, the worst terrorist attack in Spain's history. Designed by Estudio FAM and made of borosilicate glass, the blocks were manufactured with curved ends, convex on one side, concave on the other (below right). This made it possible to bond them together in circular rows of blocks to create the monument's cylindrical shape. The tempered float glass on the monument's roof was also supplied by Schott. Schott N.A., Elmsford, N.Y. www.us.schott.com CIRCLE 224

Movable glass partitions
Luconi, a leading pressure-fit systems manufacturer, launched in the U.S. market at the beginning of the year. The Osso system (above) is characterized by an aluminum bar feature that has the double function of supporting glass panels and pieces of furniture. The extruded aluminum rod stands securely, either by putting pressure between the floor and ceiling or as a self-supported unit in some configurations. Luconi also offers Simple, a new double-glazed partition system that is fully sound-rated. Luconi USA, Beverly Hills, Calif. www.luconi-usa.com CIRCLE 225

Blast-resistant curtains
For the $50 million renovation to the Zorinsky Federal Building in Omaha, Wausau Window and Wall Systems engineered and fabricated 49,305 square feet of blast-mitigating exterior curtain wall plus an additional 18,970 square feet of interior curtain wall for the building. The exterior utilizes Wausau's SuperWall system and four-sided factory-glazed unitized system, both with 1.25” protective glass. Wausau Window and Wall Systems, Wausau, Wis. www.wausauwindow.com CIRCLE 226

Reflections on the past
Jockimo's new MirrorUnique specialty glass combines a centuries-old technique for antiquing mirrors with current technologies. All MirrorUnique products are hand-made in North America by local artisans. Jockimo is able to supply custom colors, safety glass (either tempered or laminated), leaded and insulated panels, and custom fabrication (holes, notches, etc.). The glass is available in a range of thicknesses and sheet sizes. Jockimo, Newport Beach, Calif. www.jockimo.com CIRCLE 227

Modular privacy screen
Screen is a new art-glass partition by renowned glass artist, designer, and manufacturer Joel Berman. Ideal for open spaces in hospitality, office, and residential applications, the modular partition is designed to stand vertically in rooms with 8' to 9' ceilings. The unit secures in place by adjusting the fixing plates tightly against the floor and ceiling like a mechanical brace or secured to floor joists and ceiling supports with screws. A single unit features nine panels in various textures. The system can be customized to support shelves or a flat-screen monitor. Joel Berman Glass Studios, Vancouver. www.jbermanglass.com CIRCLE 228

Good to see you again
Available in 110" x 49" slabs, Bio-Glass is made from 100 percent recycled glass and is recyclable. The material can be used for countertops or worktops, interior flooring, or walls. The glass has a multidimensional appearance and its coloring varies with direct and indirect light. The white and light-green slabs (left) are made of 100 percent postindustrial recycled content, while the brown slabs are made of 100 percent post-consumer recycled content. The material is offered in polished, honed, and natural finishes. Slabs are listed beginning at $50 per square foot. Coverings Etc, Miami. www.coveringsetc.com CIRCLE 229

For more information, circle item numbers on Reader Service Card or go to architecturalrecord.com/products.
Eventscape's custom ceiling solutions

Karu&Y - Miami, FL | Flowing framed fabric ceiling panels internally lit with LED's
Eventscape - fabrication | Levine Calderin & Associates - design

Infinite flexibility. We will build any structure at any scale, with no
restriction on form or material. Our obsession with craftsmanship and
detail guarantees that every structure is as beautiful as it is functional.

See creative visions become reality at www.eventscape.net
T 416.231.8855 F 416.231.7225 E info@eventscape.net

CIRCLE 144 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS
Product Briefs

Another must-have pod
Created to ameliorate the hassles of transporting important drawings (both CAD and charcoal), The Drawing Pod tackles its competition from the side. The award-winning Pod utilizes a lengthwise system for opening and closing the tube to prevent rolled documents from unwinding against the Pod’s inner walls, making them difficult to retrieve. Available in both compact and regular sizes, the tube can accommodate documents from 18” to 36” wide, and even features a self-adjusting shoulder strap to ensure an ergonomic fit. From Concentrate, Cambridge, Mass. www.from-concentrate.com CIRCLE 230

Interior and exterior panels
Trespa’s durable panels are ideal for cladding systems with highly customizable color choices. Akin to hardwood in terms of stability, the panels are created using environmentally friendly thermosetting resin reinforced with 70 percent wood fibers under high pressure and temperature. The result is a nonporous composite panel available in an extraordinary spectrum of colors, patterns, and finishes for both interior and exterior use. Due to their impervious surface, the panels are incredibly effective as outdoor rain screens as well as indoor hygienic cladding. The Athlon line is cut and arranged like a wood-shake facade in the reception area of the Shanghai Institute of Architectural Design and Research, in Shanghai, China (right). Trespa N.A., Poway, Calif. www.trespa.com CIRCLE 231

Moldproof gypsum
USG recently launched a line of moisture-free gypsum panels boldly named Mold Tough. This addition to the Sheetrock line is the first gypsum panel to quell mold spores through an inventive manufacturing process that protects the panel’s interior and exterior from moisture. Designed specifically for interior areas, the moisture-inhibiting panels protect materials from plumbing leaks and flooding, earning a mold-resistance score of 10 under ASTM D3273 guidelines. According to USG, Mold Tough panels are easy to score and snap, and nearly effortless to install. USG, Chicago. www.usg.com CIRCLE 232
The Iron Age revisited

Irish designer Clodagh lends her talents to the Du Verre Hardware collection to create two striking new additions. The Kuba (bottom) and Primitive lines are the offspring of the union, and both showcase Clodagh’s rich use of materials and penchant for abstract tribal motifs. Also new is the Rio series (below) by Gina Lubin, founding partner of Du Verre Hardware. These exotic additions are sand-cast from brass, aluminum, and iron, and are available in a number of distinctive finishes. Maintaining a fabrication process that gives each piece minor variations, Du Verre’s new lines offer the look of ancient forging, Du Verre Hardware, Toronto. www.duverre.com CIRCLE 233

Expressionistic vinyl

InPro’s new Sunparrel Expressions line makes its durable rigid vinyl sheets available for dynamic graphic styles. With the new Expressions label, the hundreds of colors, patterns, and thicknesses available in InPro’s wall-protecting vinyl can be cut to custom design and shapes, enlivening any civic space. Also, InPro’s sheets do not contain any plasticizers and therefore do not harm indoor air quality. With its possibilities for custom colorful graphics, the new Expressions line can be used in schools or hospitals where designers can forgo institutional monochrome for something more whimsical. InPro Corp., Muskego, Wis., www.inprocorp.com CIRCLE 234

Feel the heat

Offering the most comprehensive floor-warming system on the market, Laticrete’s Fahrenheit HEAT thermal wiring is ideal for both residential and commercial projects. The Fahrenheit HEAT system is easy to install, as it requires no dangerous near-wire stapling or nailing. The mat’s self-adhesive mesh keeps it in place, and the low-profile wiring makes it virtually undetectable beneath hard tile flooring. Aside from its D.I.Y.-friendly adhesive, convenient sizes, and user-friendly thermostat, each Fahrenheit HEAT mat comes with project layout software and online guides to make installation manageable for homeowners and builders alike. Laticrete, Bethany, Conn. www.laticrete.com CIRCLE 235

For more information, circle item numbers on Reader Service Card or go to archrecord.com/products/.
When a hole in your ceiling is a good thing.

Our "Hole in the Ceiling" fixtures are plaster/fiberglass castings. Once installed, they appear to be a custom built drywall "light niche." They illuminate your space without calling attention to themselves.

Call us for more information at 626.579.0943 or visit our website today at www.elplighting.com

Smart Way to Display

What a superb way to display signage, art work, promotional items. Flexible and easy.

MPB's

An incredible array of sizes and shapes of "stand-offs", metal spacers that allow you to space your signs from the wall. Round, square, short, long, different diameters. Or to your custom specifications. See them all at mockett.com/standoffs.

"FINE ARCHITECTURAL HARDWARE FOR YOUR FINE FURNITURE"

Doug Mockett & Company, Inc. • Manhattan Beach, CA • 800.523.1269

MOCKETT

www.mockett.com

ADVANCE LIFTS

DISAPPEARING DOCK LIFT

NOW YOU SEE IT

NOW YOU DON'T

We can tailor a dock lift to fit your needs and budget.

1-800-843-3625

www.advancelifts.com

EVERY DOCK NEEDS A LIFT

CIRCLE 72 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/

CIRCLE 73 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
It also covers the most fashionable neighborhoods.
Taking Style to New Heights

Your customers want roofing materials that reflect their personal style and Hanson Roof Tile has the exceptional products they desire. With hundreds of combinations of colors and profiles from which to choose, Hanson Roof Tile crowns the buildings you design with a look that appeals to style conscious buyers.

For the finest roof tile and service in the industry visit us at www.hansonrooftile.com.

*Roof tile shown: Slate Onyx
Product Resources | Literature

Schoolhouse's textbook
Schoolhouse Electric has released a new catalog with prices and dimensions of its prewar-inspired light fixtures. Ninety-five percent of the Schoolhouse line uses hardwired, energy-efficient GU24 technology—making it the most LEED-friendly selection of period lighting available. Schoolhouse Electric, Portland, Ore. www.schoolhouseelectric.com CIRCLE 236

Surmounting your hang-ups
Peerless Industries’ 2007 professional-grade audiovisual mount catalog features an easy-to-navigate index and thorough guide. Aside from its 15 new products, the up-to-date catalog also introduces an icon-based accessory section for convenient browsing. Peerless Industries, Chicago. www.peerlessmounts.com/catalog CIRCLE 237

Powers Fasteners tome

Revamped lighting guide
Cooper Industries introduced its comprehensive catalog of specification-grade interior and exterior luminaries from its subsidiary Shaper Lighting. The 525-page catalog includes a new icon system for easy navigation, new Energy Star Rating details, and new products and finishes. Cooper Lighting, Peachtree, Ga. www.cooperlighting.com CIRCLE 239

Let Horton Save You With Single Source Convenience.

To keep your projects from becoming a sea of door specs and brands, partner with Horton Automatics. In addition to providing you with the broadest line of automatic access solutions in the industry, we offer professional service through factory-authorized distributors, all highly motivated to deliver a superior brand experience.

Developer of the world's first commercial automatic sliding door, Horton Automatics brings you unmatched performance in automatic entrances. Let your Horton distributor prove the benefits of an integrated door solution.

CIRCLE 75 ON READER SERVICE CARD OR GO TO ARCHRECORD.COM/PRODUCTS/

For more information, circle item numbers on Reader Service Card or go to architecturalrecord.com/products/.
The infill panels and stair risers shown here depict strength, ventilation, visibility plus a striking aesthetic appeal.

McNICHOLS® Designer Metals are strong in character, yet work in harmony with your complete design. Strength, beauty and functionality make our products a practical Hole Choice for any project.

You will find us friendly, knowledgeable and eager to help you with Hole Choices and:

✓ quick product information on material types and styles . . .
✓ selection assistance from a vast choice of patterns, openings, gauges and diameters . . .
✓ specifying information on a variety of Designer Metals.

Versatile Hole Products provide solutions for architects, designers, engineers, and contractors. More information on Hole Products is available at our website www.mcNichols.com along with a new Continuing Education course for Architectural and Design Professionals.

Let Your Hole Choice be Perforated Metal!
Other Designer Metal Perforated Patterns include:

<table>
<thead>
<tr>
<th>Round</th>
<th>.200 Square</th>
<th>Meire</th>
<th>Hexagon</th>
<th>Airline</th>
</tr>
</thead>
</table>

Hole Choice - Perforated Metal

Product Resources On the Web

www.hessamerica.com
The Web site of Euro lighting label Hess elegantly arranges its American products under a clean interface. Pop-up side menus guide buyers to product specifications, multi-angle photographs, technical drawings, and even catalog-page PDFs. Aside from the firm’s familiar lighting, the Web site also showcases its range of other products, such as benches, litter receptacles, bike racks, and railing systems. In addition, the Web page offers more than 300 reference photographs of its products on-site in projects across North America and Europe.

www.jeld-wen.com
Boasting the largest selection of custom wood window drawings and product specifications online, Jeld-Wen’s Web site is undeniably massive in scope—perhaps even to a fault. It is overrun with a glut of options and images for architects, builders, and homeowners alike, yet the search process is often labyrinthine and lacks a smooth interface. Nonetheless, its product listings are virtually inexhaustible, offering prospective buyers the opportunity to browse a number of styles, finishes, and hardware types.

www.sub-zero.com
www.wolfappliance.com
Sub-Zero and Wolf Appliance—celebrity names in the gourmet kitchen industry—fuse their legendary products into a glossy shared Web site. While it often hiccups as a result of massive flash videos and demos, the site is easy to navigate and highly interactive. Buyers can browse a range of customizable options and color palettes to help them visualize their dream kitchen. And with a bevy of product measurements, photos, and informational videos, the site makes it that much more attainable.

www.bendheimcabinetglass.com
The words "Your home. Your vision" welcome visitors to the remarkably user-friendly Bendheim Cabinet Glass site, which makes said vision lucid through its online resources. The site offers measuring tips and a hotline number for D.I.Y. soldiers, as well as an online catalog that’s easy to browse. Interested buyers simply select search criteria (various types and styles) and sift through resulting options. Aside from obtaining detailed specifications of glass sizes and prices online, prospective customers can also order 2 ¾” x 5” samples for $3.
LINIT channel glass

PROJECT: The Nelson-Atkins Museum of Art, the Bloch Building, Kansas City, MO

OBJECTIVE: Construct a bold museum addition complimenting the original classical, columned building. Allow an unobstructed view of the stately main entrance and the expansive Kansas City Sculpture Park. Provide underground galleries suffused with natural light.

SOLUTION: Over 100,000 sqft of custom Lamberts LINIT channel glass form five lenses that punctuate the hills, pouring daylight into the galleries below. LINIT's exclusive Solar® texture, low iron channels diffuse the sunlight, enhance the galleries' interior lighting, and form immense glowing night sculptures. Soaring to heights of 22', every channel is SGCC certified tempered and heat-soak tested. Successful execution of architecture as art; immediately one of the most recognizable buildings in the world.

ARCHITECT: Steven Holl Architects, New York, NY with BNIM Architects, Kansas City, MO
GLAZIER: Carter Glass, Co., Inc., Kansas City, MO

Bendheim Wall Systems, Inc. Visit us on the Web at www.bendheimwall.com or call 888.710.5195

CIRCLE 78 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/

CIRCLE 79 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
American Institute of Architecture Students

The AIAS serves as the incubator for the architecture profession and its many related organizations. By joining the AIAS, members are expressing interest in the profession and in their future. Our leadership development activities provide significant opportunities for students to advance their skills while encouraging them to become engaged members of the profession as well as leaders in industry, in their communities and in society. Many AIAS alumni have served and continue to serve as leaders in the profession and their communities today.

Through the development of AIAS Emerging Leader Initiatives, our members impact society by strengthening and developing unique community outreach programs. The AIAS fosters future generations of professionals who are prepared to take active leadership roles in the profession and in industry, and who are ready to address critical societal matters. As involved citizens, leaders and policy makers on local, national and global scales, these future leaders will be addressing needs for healthy and sustainably designed buildings and communities, and will be dealing with issues such as affordable housing, mass transportation, and universal design.

For more information on becoming involved with future generations of professionals, please visit www.aias.org.
New and Upcoming Exhibitions

Me, Myself & Infrastructure: Private Lives and Public Works in America
Chicago
August 8–November 16, 2007
Featuring a New York coffee shop, a comfortable living room, a city bus stop, and a “big box”–type store, this exhibition invites visitors to explore how their decisions—whether it’s buying a home in a new subdivision or shopping at Wal-Mart—shape the built environment. At the Chicago Architecture Foundation. Call 312/922-3432 or visit www.architecture.org.

California Design Biennial 2007
Pasadena
August 18–September 30, 2007
This exhibition is a juried selection of the most original and important design produced in California over the past two years and is the only show that highlights the unique achievements of California designers. Fashion, furniture, transportation, consumer products, and graphic design will be on display—all selected by a jury of renowned design professionals. At the Pasadena Museum of California Art. Call 323/936-1447 or visit www.caap.com.

Lectures, Conferences, and Symposia

Is Efficiency Good Enough?
Chicago
August 14, 2007
A public program with Helen Kessler, FAIA, HJKessell Associates. At the Chicago Architecture Foundation. Call 312/922-3432 or visit www.architecture.org.

The 2007 Western Mountain Region Conference: Dreamscapes to Greenscapes
Incline Village, Nevada
September 12–16, 2007
The conference will promote sustainable design and energy conservation in the region. Featured speakers will be Edward Mazria, founder of Architecture 2030, and R.K. Stewart, the national president of AIA. The conference will include an exclusive green trade show and expo with demonstrations. At the Hyatt Regency Resort. For further information on expo booths, call 775/827-4441. For more about the WMR conference, visit www.aiann.org.

Dwell on Design Conference + Exhibition: Building Community in the Modern World
San Francisco
September 14–16, 2007
All aspects of the built environment will be included, from urban redevelopment projects to cohousing and single-family dwellings, farmers markets to public art programs, as well as diverse social and economic interactions that define the world in which we live. A hands-on marketplace will demonstrate top products and services inspired by modern design. At the Concourse Exhibition Center. Visit www.dwellondesign.com.

Competitions

Schedule: The Art of Drawing in the Age of Digital Architecture
Deadline: August 31, 2007
An international call for entries to submit portfolios celebrating the drawing abilities of today’s

Made Possible by Bilco

Energy costs around the world are rising. Even the slightest increase in electric prices causes the operating costs for a typical building to rise. Fortunately, with the implementation of a proper daylighting design, building owners can save up to 75% of the energy used for lighting a building. Turning off or dimming lights when not needed can also save 10% - 20% of the energy used to cool a building. Installing Bilco’s Luminvent® fire vents will vent smoke, heat, and noxious gases in the event of a fire as well as allow natural lighting to illuminate warehouses, manufacturing plants, and other facilities with large expanses of unobstructed space and further reduce energy costs.

Bilco, Your Source for Specialty Access Solutions

For more information on our products or help with your next design problem, call (203) 934-6363 or log on to www.bilco.com.
Totally Swageless Fittings

Now cable railings are easier than ever to install.
No swaging.
No special tools required.

Contact us today to learn how easy it is to design a cable railing that you and your client will be proud of.

Distributed throughout the U.S. and Canada by:

WAGNER

The Wagner Companies
888-243-6914
414-214-0450 fax
E-mail: catalog@mailwagner.com
www.wagnercompanies.com

Manufactured in the U.S. by:

Ultra-tec

CABLE RAILING SYSTEM

The Cable Connection
800-851-2961
775-885-2734 fax
E-mail: info@ultra-tec.com
www.ultra-tec.com

Dates & Events

emerging architects. For more information, visit www.schedium.org.

Portland Courtyard Housing Competition: Creating Spaces for Families, Community, and Sustainability in the City
Deadline: October 24, 2007
This competition will explore possibilities provided by housing oriented to shared courtyards as an additional infill housing type for Portland, Oregon. Architects, landscape architects, builders, developers, students, and others interested in the competition are eligible. Multidisciplinary teams are encouraged. Visit www.courtyardhousing.org.

Self-Sufficient Housing/
The Self-Fab House: 2nd Advanced Architecture Contest
Registration Deadline: September 17, 2007
An international summons to architects, designers, and students from around the world, inviting proposals for the construction of self-sufficient dwellings with an emphasis on exploring people's capacity to construct their own homes. Visit www.advancedarchitecturecontest.org.

The American Institute of Architecture Students' (AIAS) 2nd Annual National Student Design Competition
Deadline: November 5, 2007
Developed for advanced students, this competition will challenge participants to design a pediatric outpatient rehabilitation center and family support facility utilizing architectural aluminum building products and systems. For more information, visit www.aias.org/kawneer.

Palladio Awards
Deadline: November 15, 2007
This program recognizes individual designers and/or design teams whose work enhances the beauty and humane qualities of the built environment through creative interpretation or adaptation of design principles developed through 2,500 years of the Western architectural tradition. Call 718/636-0788 or visit www.palladioawards.com.

E-mail event and competition information two months in advance to elisabeth_brooms@mcgraw-hill.com.
“Need some help planning your next move?”

Turn to McGraw-Hill Construction’s Custom Market Research team—and our extensive construction market expertise—for the information and insights you need to make smarter, better business decisions.

Reliable, timely, value-driven solutions:
- Brand Equity/Product Awareness
- Construction Market Projections
- New Product Development
- Customer Satisfaction
- Competitive Intelligence
- Price Elasticity

Call 866.239.4261 or email brian_tonry@mcgraw-hill.com for your FREE consultation or go to dodge.construction.com/analytics/

Go to www.construction.com
American Institute of Architecture Students

Life safety, dignity and comfort are the foundation of and the reason for Freedom by Design™. Freedom by Design is an AIAS-led program that utilizes the talents of architecture students in service to their communities by helping individuals with physical challenges. FBD provides students with the opportunity to combine design skills and with a passion for service and leadership that can radically impact the lives of individuals in need.

Minor modifications to the homes allow individuals to live safely, comfortably and with dignity by addressing their struggle with everyday tasks such as getting in and out of showers, ascending stairs, or egress to the home itself.

Through its 130 chapters, the AIAS is implementing a program that involves students resolving accessibility issues, and simultaneously provides the students with the experience of working with a client, mentorship from a local architect, and an understanding of the practical impact of architecture and design. The AIAS will continue to work diligently to place FBD and issues of universal design and community service in the national spotlight.

You are invited to get involved. The AIAS is seeking mentors and supporters to help us grow this important program. Please help us help others. To learn more, visit www.aias.org/freedom.
Learn & Earn
AEC Daily Corporation

Learn & Earn!
Take a Continuing Education Course at AEC Daily and you could be a winner!

FREE on-line continuing EDUCATION

aeccdaily.com
AECDAILY
CONSTRUCTION•INFORMATION•RESOURCES

877-566-1199 ext. 807
www.AECCollege.com

Decorative Metal Ceilings
Gage Corporation, Int.
The Gage Corporation International has been designing and manufacturing decorative metal ceilings since 1989. Gage ceilings feature more than 50% post-consumer recycled material and are visually rich, functional, and versatile as a design medium. Custom collaboration is encouraged. Contact the Gage factory for literature and sample requests.

800-786-4243
www.gageceilings.com

Mold/Moisture Resistant Glazed CMU
Trenwyth Industries
Exceptional high-performance buildings begin with Trenwyth premium architectural concrete masonry units. Astra-Glaze-SW+® recycled glazed units offer the beauty of ceramic tile and the durability and structural integrity of concrete masonry. Available in color, shapes and sizes you won’t find anywhere else, Astra-Glaze-SW+® units are mold/moisture resistant, easy-to-clean and stain/graffiti resistant.

800-233-1924
www.trenwyth.com

Cornice Mouldings for Indirect Lighting
Architectural Products by Outwater, LLC
Orac has created a special series of high-density polyurethane cornice mouldings in its Orac Decor® and Orac Myline Collections that have been specifically intended for use with indirect lighting. Manufactured to easily accept a variety of cove moulding light fixtures without causing scalloped or uneven light dispersion and illumination, the Orac Decor® and Orac Myline Cornice Mouldings for Indirect Lighting can also be used just as readily as a traditional cornice moulding without lighting if desired. Free 1,100+ Page Master Catalog!

800-835-4400
www.outwater.com

Tension Rods
Decon USA Inc.
Macalloy Bar and Cable Systems: Available in both carbon and stainless steel. The strength and aesthetic qualities of Macalloy Tension Rods are evident. High strength material allows use of smaller diameters, preferred by Architects and Engineers. Airports, Museums and Stadiums incorporate Macalloy Tension Rods, pushing the envelope of modern structures.

866-783-7245
www.deconusa.com

Quality Certification Program
Architectural Woodwork Institute
Savvy designers know that custom architectural woodwork adds a sophisticated statement to any project. That’s why the specification for custom woodwork should include compliance with the AWI Quality Standards during the fabrication, finishing and installation when inspected. When you specify the use of AWI Quality Certification Program labels and/or certificates for your woodwork project, you also have access to QCP representatives who can answer technical questions or evaluate the woodwork per the contract team’s request.

571-323-3636
www.awiqcp.org
Custom Capabilities

Contact Industries

Defect-free wood veneer on the outside. Aluminum, PVC, MDF or finger-jointed pine on the inside. Innovative veneer technology that combines the warmth and beauty of wood with the versatility and performance characteristics of non-wood building materials. With Contact’s wrapped profiles you can creatively specify form, fit and function in ways you might never imagine.

800-547-1038
www.contactind.com

| Circle Reader Service #156 |

Interior and Exterior Wall Cladding

Armetco Systems

Armetco Systems offers a complete line of metal cladding systems for interior and exterior wall applications, including cornices, fascias, soffits, canopies, column covers, beam wraps and various architectural elements. Materials include aluminum composite material and aluminum plate with high performance paint finishes and anodized finishes, as well as natural finishes like copper, stainless steel and zinc. Armetco has metal cladding solutions for every application. Engineered systems include rout and return dry seal, continuous edge grip, a variety of wet seal systems and the new RS4 rainscreen system.

800-647-3778
www.armetco.com

| Circle Reader Service #159 |

Structural Framing Solutions

iLevel by Weyerhaeuser

TimberStrand® LSL is one part of a complete and integrated package of framing materials available from iLevel® by Weyerhaeuser—from foundation to rooftop—which include trusted products and brands such as True Joist® Parallam® parallel strand lumber (PSL), TJ1® joists, Structurwood® panels and Weyerhaeuser Premium Joists™.

888-LEVEL8
www.iLevel.com

| Circle Reader Service #157 |

Fire-Rated Aluminum Products

Aluflam North America

Imagine being able to specify a fire-rated system that looks so good you wouldn’t know it’s fire-rated. Imagine the clean, rich lines of clear glass. With ALUFLAM storefront and curtainwall systems, this is reality. Contact them for further information.

714-899-3990
www.aluflam-usa.com

| Circle Reader Service #160 |

Columns, Balustrades & Cornices

Melton Classics

Melton Classics provides the design professional with the most comprehensive selection of quality architectural products in the industry, including architectural columns, balustrades, moldings, cornices, and a wide array of architectural elements. Architectural columns are available plain or fluted, load-bearing or column covers, round or square in fiberglass, fiberglass/marble composite, synthetic stone, cast stone, GFRC, and wood for paint or stain. Melton Classics offers a maintenance free balustrade product ideal for any application.

800-963-3060
www.meltonclassics.com

| Circle Reader Service #158 |

Extreme Performance Insulating Glass

AZON USA INC.

Warm-Light® spacer for insulating glass provides a more comfortable interior environment, reduces thermal conductivity and condensation on the glass surface while lowering utility costs. Azon is the global leader in developing technology for the manufacture of thermal barrier aluminum fenestration, commonly referred to as the pour and debridge method.

800-788-5942
www.warmedge.com

| Circle Reader Service #161 |
Stained Glass for Hurricane & Earthquake Codes
Bovard Studio Inc.

Bovard Studio Inc. Stained Glass has developed a proprietary process for laminating stained glass onto large panels of 1/2-in. laminated tempered glass to meet hurricane and earthquake codes. Pictured: West Angeles Cathedral’s 108-ft.-high stained glass tower with its 652-ft.-long by 8-ft.-high stained glass clerestory band. Visit us at the Traditional Building Exhibition and Conference at the Morial Convention Center in New Orleans, October 18-20, 2007 (Booth #101), and at the National Preservation Conference at the Saint Paul Rivercenter, St. Paul, MN, Oct. 2-6, 2007 (Booth # to be announced).

800-452-7796
www.bovardstudio.com

| Circle Reader Service #162 |

Versatile Windows
Fenevations, LLC

Fenevations manufactures MegaWood, Infinity Bronze, and SteelView windows. Megawood offers fine hardwoods with furniture-grade finishes, combined with heavy gauge bronze or hand welded, aluminum extruded exteriors. Infinity Bronze is a unique thermally broken solid bronze system offering beauty, style and traditional sightlines. SteelView offers stainless steel beauty for contemporary designs.

908-688-5710
www.fenevations.com

| Circle Reader Service #163 |

Special Purpose Doors and Windows
Krieger Specialty Products

Say goodbye to boring. Krieger’s acoustical blast and bullet doors can be veneered to achieve any visual aesthetic you seek. Choose from virtually every type of wood. Apply antique facades to brand new doors. Or—go for the bold look of stainless steel, bronze, brass, copper or stone.

800-251-5256
www.KriegerProducts.com

| Circle Reader Service #166 |

Daylighting
Kalwall Corporation

Curtainwalls, window replacement systems and skylights of every imaginable configuration from a world leader in translucent daylighting with over 50 years of innovation and performance. Renowned for balanced, diffuse natural light, Kalwall fills any space with glare-free, shadow-free, pure museum-quality Daylighting™ and the most advanced insulating performance. An inviting nighttime glow brings any building to life while preventing direct-beam illumination from escaping the building. Daylight modeling service. Green and LEED®.

800-258-9777
www.kalwall.com

| Circle Reader Service #164 |

Movable Glass Partitions
Luconi-usa

Onso is a real biomechanical sculpture, characterized by the peculiar aluminum bar, which has the double function of supporting panels and pieces of furniture. It stands simply and securely, either by putting pressure between floor and ceiling or can be self-supporting in some configurations, offering a wide range of panels and materials for partitions, doors, furnished walls, closets, desks, bookshelves, drawers and containers. This pure, functional element, like a dress, finds space in applications such as homes, offices, retail, kitchens and bathrooms.

310-734-8782
www.luconi-usa.com

| Circle Reader Service #167 |
Built-in Sun Management
Major Industries, Inc.

Illuminate interior spaces with controlled natural daylight, all while gaining the benefits of reduced HVAC costs and LEED® credit opportunities. Guardian 275® Translucent Daylighting Panels feature integral water management systems and advanced anti-weathering technology for years of worry-free service. When your next project demands energy-saving, glare-free natural light, choose Guardian 275® Translucent Daylighting Panels from Major Industries. From pre-engineered Quick Ship™ skylights to custom-designed focal points, they’re your one-stop source for quality daylighting solutions.

888-759-2678
www.majorshlghts.com

| Circle Reader Service #168 |

Steel Curtainwall Systems
Technical Glass Products

Architects and designers now have a better way to incorporate large expanses of glass in building designs. European-designed SteelBuilt Curtainwall™ Systems from Technical Glass Products are strong and slim, allowing larger spans of glazing than aluminum framing and increased ability to bring natural light indoors.

800-426-0079
www.tgpamerica.com

| Circle Reader Service #171 |

Sphere Glass
Nathan Allan Glass Studios Inc.

Sphere Glass is produced by creating hemispheres in various diameters, that are individually formed and attached to background panels of Clear or Cast textured glass. Clear panels allow for 100% light transmission and Cast panels provide a decorative background while creating privacy, and still allowing for ample light transmission. Spheres are available in 5 different Tints, Clear, and Low Iron glass. For more traditional tastes, crinkled textures of Gold and Silver Leaf Spheres are also available. Diameters can range from 1-in. to 24-in. Client: Denver News Agency. Architect/Designer: Newman Cavender & Deans, CO. 604-277-8533 ext 225
www.nathanallan.com

| Circle Reader Service #169 |

Custom Molded Architectural Shapes
Formglas

Custom molded architectural shapes by Formglas expand design opportunities for interiors and exteriors. Lightweight and durable GRG and GRC components are cast in an endless array of shapes, textures and color finishes. Their team of trained professionals work with you to find practical and easy to install solutions that enhance aesthetic appeal. Email Info-ars@formglas.com

416-635-8030
www.formglas.com

| Circle Reader Service #172 |

Sustainable Commercial Entrance Products
Special-Lite, Inc.

Special-Lite provides a single, sustainable solution to the multiple challenges of school and commercial entrances. Attractive entryways for all architectural styles; GREENGUARD Certification for Indoor Air Quality; superior thermal performance; no need to finish or refinish; cannot rust, crack, split, peel or rot; extends life of entire entrance; low maintenance requirements. To learn more, visit their website or request their Green and Educational Facilities brochures.

800-821-6531
www.special-lite.com

| Circle Reader Service #170 |

Sports Floors
Haro Sports Floors

Athletes shouldn’t suffer through injuries due to a poor performing sports floor. Athletic Floor Systems provides high performing, safe and low cost gymnasium floors. AFS supplies sports floors for competition gyms, sports arenas and multi-purpose facilities. There are more than 7500+ installations in over 65 countries. Demand performance, safety and low cost in your next sports floor.

800-323-6792
www.haro-usa.com

| Circle Reader Service #173 |
Pre-Engineered Door Hardware

HDI Railings

From minimalist simplicity to stylish sophistication, HDI offers products designed to suit every taste. Featuring nearly 60 distinct designs made from stainless steel, wood, glass and stone, you're sure to find a solution to your need. Many pull handles come in a variety of sizes, and the HEWI CombiSystem features a patented method of adjustment, allowing easy installation on existing doors.

717-385-4088
www.hdirailings.com

| Circle Reader Service #174 |

Exterior Tin Ceilings

M-Boss Inc.

Enhance the overall design of any exterior space with a pressed metal ceiling from M-Boss Inc. Choose from hundreds of patterns and finishes; in patterns ranging from sleek, contemporary styles to traditional designs replicated from turn-of-the-century originals. Available in three substrates: aluminum, solid copper and tin. Products are economically and promptly shipped direct to job sites.

877-20 M-Boss (877-296-2677)
www.mbossinc.com

| Circle Reader Service #177 |

Green Roof Systems

Homasote Company

Homasote Company, one of America's leading green building products manufacturers and nailbase roof insulation's originator, has received Factory Mutual approval for N.C.F.R.® Thermasote® on steel roof decks. Use it to specify attractive, residential-looking roofs for multi-family, mixed-use, commercial, medical and other construction. For an alternative green roof system, excellent for conventional and LEED® construction, specify Firestar® Roof Deck with N.C.F.R.® Thermasote. Wind uplift tests show these Homasote® systems make code in wind-prone areas.

800-257-9491 ext. 1211
www.homasote.com/thermasote

| Circle Reader Service #178 |

Reduce Impact Noise

Noble Company

NobleSeal® SIS is a sheet membrane that reduces the impact noise produced by hard surface flooring (like tile and hardwood floors). SIS is only 3/4-in. thick so it minimizes problems with transitions and the need to alter door and cabinet heights. It is effective at reducing noise (RC-52; STC-59). SIS can be installed over all common substrates, even gypsum concrete and radiant heating systems. SIS can also protect thin-set tile from cracking and provide waterproofing. Visit their web site. Email richard@noblecompany.com

804-878-5788
www.noblecompany.com

| Circle Reader Service #179 |

Expand Your Architectural Options

Linotec

Linotec, a Kynar 500/Fylar 5000 paint, anodize and powder coat finisher offers "Introduction to Coatings: Field Performance and the Application Process" as a registered online learning program to help you attain your AIA Continuing Education credits. This presentation is available on demand from Linotec's Architect Resource Center located on their website at www.linetec.com.

888-717-1472
www.linetec.com

| Circle Reader Service #176 |

A Big Noise in Acoustics

Tectum

Tectum Inc. is making a big noise with their new Fabri-Tec™ designer fabric acoustic panels. With over 70 different style and pattern options, Fabri-Tec gives architects and designers greater freedom to realize their visions for spaces that need sound deadening, and attractive surfaces. Request product literature or swatches at Tectum.com.

888-977-9691
www.tectum.com

| Circle Reader Service #178 |
Tiles
Viva Ceramica

On their 1cm thick Backstage tiles, available in the 60x90cm and 30x90cm sizes, they fused 2 μm of metal onto the through-bodied porcelain slab. The resulting metalized glaze was then colored before they honed it to reveal totally unexpected metallic effects in green/yellow, red/orange, red/white and blue/black. All this as well as a really natural looking surface all set for the challenges of wear and tear and aging in a completely new way. Ideal for private homes and bathrooms, Backstage can also be used to great effect by interior designers in decorating ultra-modern stores.

www.cerviva.it

Architectural Sheetmetal Products
CopperCraft

Structural integrity and performance are as important as aesthetics. Applying this understanding to the manufacture of its products is what sets CopperCraft apart from the competition. Their design, engineering, testing, and fabrication methods meet stringent structural and performance standards. You get unsurpassed quality, delivery, and customer service including a nationwide network of representatives. Their complete line of high quality architectural sheetmetal products include ornamental dormers, roof vents, roof drainage products, conductor heads, steeples, cupolas, and spires.

800-486-2723
www.coppercraft.com

Wall Coverings
Mardero, LLC

Mardero, LLC specializes in green and environmentally friendly decorative products. Their newest line of Japanese Wall Coverings is made with Diatomaceous Earth, sand and straw. Free of VOC. It has a natural ability to remove foul smells, and maintain room humidity. They also offer granite, marble, limestone and lami-stone.

650-625-1887
www.mardero.com

Translucent Insulated Wall Lights
CPI Daylighting Inc

CPI is a world class leader in the design and manufacture of translucent insulated wall light systems. CPI’s unique translucent polycarbonate standing seam glazing system provides great value for your construction dollar. CPI systems are made with Pentaglas® Nano-Cell technology, the latest and most advanced system for architectural daylighting applications.

800-759-6985
www.cpidaylighting.com

Counter Support Brackets
Rangine Corporation / Rakks

Rangine Corporation’s counter support brackets provide an easy-to-install alternative to full-height laminated panels. Available in a range of sizes to support counters up to 30-in.-deep, brackets install easily into studs or blocking and can support loads up to 450-lb. Less expensive than laminated supports, they increase open space while improving handicapped access and ergonomics. Brackets can be ordered in either surface or flush mounted configurations to provide heavy-duty unobtrusive support. Manufactured of extruded structural aluminum.

800-826-6066
www.rakks.com
Aircraft Grade Aluminum Tables
Gyford Productions

Make a bold addition to your next interior design project with the Tecno Table and the new MiniTec Table. Created from their Standoff Systems product line, manufactured from aircraft-grade aluminum, each table can be customized to meet your needs. Visit their website at www.standoffs.com. To see more of their products, you may also visit www.todl.com or www.arcat.com. Call or e-mail for your free catalog and additional information.

775-829-7272
www.standoffs.com

| Circle Reader Service #186 |

Public-Use Recycling Receptacles
Kettle Creek Corporation

Highlight your green building projects by specifying recycling receptacles in place of traditional ones. Kettle Creek’s clean, contemporary designs are clearly marked for proper use. Their products are made of recycled plastic lumber and aluminum, two materials that combine great performance in outdoor settings with the environmental benefits of high-recycled content.

800-527-7848
www.kettlecreek.com

| Circle Reader Service #187 |

Clean-Lined Outdoor Furniture
Modern Outdoor

Premier provider, designer, and manufacturer of high-style, clean-lined, environmentally conscious outdoor furniture that is still made here in America. They offer four complete lines of furniture engineered for use in heavy commercial applications with the aesthetics for residential environments. Their lines include chairs, tables, benches, settees, stools, club chairs, sofas, ottomans, loungers, planters, bar carts, accent tables, and bar height products. They also offer custom work as pictured here with this communal table. Fax number 818-785-0168 Email info@modernoutdoor.com

818-785-0171
www.modernoutdoor.com

| Circle Reader Service #188 |

Metals & Architectural Products
Móz Designs

Móz new Elevator Interiors are prefabricated to offer easy installation and come in a variety of horizontal, vertical and square configurations. Their products stand up to high traffic and are available with durable Special Finishes. For a truly exceptional look, specify embossing and other unique features. Móz elevator interiors are available in aluminum and stainless steel with any combination of 12 unique patterns and 16 standard colors.

513-632-0853
www.mzodesigns.com/a8

| Circle Reader Service #199 |

Custom Made Light Fixtures
CP Lighting

CPLIGHTING offers a wide variety of custom made acrylic and metal decorative light fixtures designed by Christopher Poehlmann. The new BigShade Pendant is perfectly suited for hotels and restaurants as well as residential use. Measuring 34-in. in diameter by 15-in. high, this cable-suspended fixture is lapped with a 10W type G bulb providing excellent illumination without hot spots. Visit their website www.cpighting.com to see the complete line of CPLIGHTING fixtures including the newGROWTH aluminum tree branch chandelier and other custom designs.

866-597-4800
www.cpighting.com

| Circle Reader Service #190 |

Decorative Lightning Rods
East Coast Lightning Equipment, Inc.

East Coast Lightning Equipment, Inc’s (ECLE) line of architectural finials add a decorative touch to lightning protection systems. ECLE’s finials are available in aluminum, brass and tinned-bronze. Five sizes range from 15-in. to 96-in. tall. The UL-listed finials can be incorporated into an industry-standard lightning protection system in lieu of traditional air terminals (lightning rods) for residential, historical and commercial projects. Finials can also be used alone as architectural accents.

888-680-9662
www.ecle.biz

| Circle Reader Service #191 |
Architectural Lighting and Ceiling Fans

G Squared Art

Slipstream pendant: an effortlessly smooth shape that makes a powerful yet graceful statement. Without superfluous details it will be appreciated by those who understand the power of pure form. To buy eco-friendly, high-design architectural lighting and fans please visit G Squared Art's website at www.g2art.com or call toll free 877-858-5333 M-F, 7 AM-5 PM PST.

877-858-5333
www.g2art.com

| Circle Reader Service #192 |

Design Luminaire & Pole

Sternberg Lighting

GALESBURG 1921 is a true vintage style roadway fixture with high-tech lamping. This large scale fixture has an optional hang straight box that gives additional support between the arm and fixture. Available with either polycarbonate, acrylic or glass tear drop prismatic acorn for excellent lighting. May be used with up to 400W metal halide or high pressure sodium lamping. Shown here painted with a custom two-tone green and gold stripes. The Galesburg luminaire measures 18-5/8-in. x 34-1/2-in. STERNBERG LIGHTING specializes in custom design and lighting since 1923.

800-621-9376
www.sternberglighting.com

| Circle Reader Service #195 |

Elegant Outdoor Step Light

Hunza Lighting

The Hunza Solid Step Eyelid is an outdoor step lighting fixture that uses a canister mounting system to provide easy installation and a clean appearance, free of any visible mounting screws. Finish choices include solid copper, 316 stainless steel or machined, painted aluminum.

310-560-7316
www.hunzalighting.com

| Circle Reader Service #193 |

European Cobblestone

Eurocobble

An updated catalog features authentic European cobblestone preassembled in modular form. Modules in square, fan, concentric ring, and custom formats arrive at the job site ready for a quick and easy installation. Pedestrian or vehicular applications. Eurocobble has supplied the design community with traditional and customized paving solutions for over 20 years. Call toll free or visit the web site.

877-877-5012
www.eurocobble.com

| Circle Reader Service #198 |

Lighting Collection

Rocky Mountain Hardware

Known for creating fine architectural hardware, Rocky Mountain Hardware is proud to introduce their Lighting Collection. Combining the warm texture of cast art-grade bronze with hand crafted glass, this collection is designed to gracefully span styles from contemporary to traditional. View the entire collection at www.rockymountainhardware.com

888-552-9497
www.rockymountainhardware.com

| Circle Reader Service #194 |

Architectural Surfaces

PERMA-CRETE®

ICC approved PERMACRETE® surfaces provide architectural, load-bearing strengths of over 6,000 PSI compressive strength, and are sealed, nonporous, and chemically resistant to solvents, stains, temperatures and UV rays. The products can be applied over most surfaces including building exteriors, driveways, sidewalks, bridge decks and pool interiors. PERMACRETE® renews instead of removes, enhances property values, and is a cost-effective way of eliminating surface deterioration and costly maintenance. Visit them at www.permacrete.com.

800-607-3762
www.permacrete.com

| Circle Reader Service #197 |
Senior Associate University Architect
University Architect’s Office (reference # 00031736)

Indiana University has a long history of preserving and managing its built environment and the spaces between and is seeking candidates for a Senior Associate University Architect position in support of its vision. Located on the Bloomington campus, the position is responsible for the direction and coordination of consultants, review and critique of design, campus master planning, budgeting, and supervision of new construction, renovation, and remodeling projects on the Bloomington Campus. The position manages engineering, graphic information, design studio, and administration and construction management units which provide project support for IU’s seven campuses.

The Bloomington campus is listed as one of the five most beautiful campuses in the nation and has over 500 buildings built on approximately 2,000 acres with a student population of 38,000. Within the campus there are buildings and districts that are nationally listed as historic. The University Architect’s Office is currently responsible for approximately one billion dollars of planning and construction on all campuses.

Requirements: Bachelor’s degree in architecture and ten years experience as a practicing architect, preferably in design construction/renovation fields, including management experience required. Demonstrated skills in architectural design and design critique; demonstrated experience working with historic buildings and landscapes; and demonstrated ability to work with and manage a diverse workforce required. Must currently be a registered architect and be able to become a registered architect in Indiana.

Apply online at www.jobs.indiana.edu. Alternately, a cover letter and resume may be sent to Indiana University, UHRS Employment, 400 E 7th Street, Bloomington, IN 47405.

Indiana University is an equal opportunity/equal access/affirmative action employer. We value diversity and encourage applications from women, members of minority groups, and persons with disabilities.

University of Nebraska - Lincoln
College of Architecture
Graduate Programs
http://architect.unl.edu

Architecture and Interior Design
phone 402-472-4065
tax 402-472-3016
322 Architecture Hall West
Lincoln, NE 68588
architecture2@unl.edu
interior@unl.edu

Community and Regional Planning
phone 402-472-2020
tax 402-472-4017
302 Architecture Hall
Lincoln, NE 68588

LEAD DESIGN ARCHITECT
POSITION AVAILABLE AT WORKSTAGE, LLC
IN GRAND RAPIDS, MI

Workstage, a research-driven design build developer focused on delivering flexible, user-centered, and sustainable buildings, is looking for a Lead Design Architect. This job will require - presentation to executive management, lead various internal and outsourced resources to design, document and assemble plans and specs for hi-tech concept projects. Knowledge of 3D technology, design related applications, site planning design process and work with multi-disciplined teams to develop building designs. Must have a degree in Architecture and 10 years experience in Design/Build or AE firm. Submit resumes via e-mail to csmith@workstage.com. www.workstage.com

ARCHITECTURAL 3D VISUALIZATION DESIGNER (MANHATTAN, KS)

Responsible for design renderings of mid/high rises & production of 3D CAD models for presentation & analysis of sustainability, earth-friendly materials, energy smart, air flow & other green features, & for LEED cert. BArch or equiv + 2 yrs exp reqd. Resume to Emilio DiPonio, Cook+Fox Architects LLP, 641 Ave of Americas, 8th Fl, NY, NY 10011.

JOB CAPTAIN (ATLANTA OPENING)

Assist the project architect in the development of project goals, schedules, and construction drawings for high-rise residential, commercial, hospitality and mixed-use projects. Mail resume with portfolio, referencing job code JG0707 to: D. Horton, Smallwood, Reynolds, Stewart, Stewart & Assoc., Inc., 3505 Piedmont Rd., Suite 303, Atlanta, GA 30305.

PROJECT MANAGER/ARCHITECTURAL DESIGNER (NYC)

SENIOR NAVAL ARCHITECT

VersamTree Engineering, LLC seeks Senior Naval Architect to work in Houston, TX. Candidate must have Masters or higher degree in Naval Architecture, Civil Engineering or Ocean Engineering plus 1yr experience. Fax resume to John Greeses at (713) 937-7222. Put job code VM-NAV002-1 on resume.

ARCHITECT, FIELD (NYC)

Dgn, plan research & admin of architectural projects. Fax resume to: Kiska Group Ltd, 718-290-9112.

WWW.SMPSCAREERCENTER.ORG

Find marketing/BD professionals with A/E/C experience. Call 800-292-7677, ext. 231.

ARCHITECTS

As a well-known recruiting firm, we can help advance your career. JR Walters Resources specializing in A&E placements. Visit our web site: www.jrwalters.com Tel: 269 925 3940.

MANAGER, NAVAL ARCHITECTURE

VersamTree Engineering, LLC seeks Manager, Naval Architecture to work in Houston, TX. Candidate must have PhD in Naval Architecture, Civil Engineering or Ocean Engineering plus 2 yrs experience. Fax resume to John Greeses at (713) 937-7222. Put job code V/E/NA-002 on resume.
Product Reports 2007

Attention All Building Product Marketers: Please submit your new products to ARCHITECTURAL RECORD's Product Reports 2007. Product Reports will again be a major editorial feature in the December issue of ARCHITECTURAL RECORD, presenting the most interesting and useful new building products that will be available to the architect, specifier, and designer in 2008. A panel of architects, design professionals, and editors will select products for publication from those submitted by September 7, 2007. There's no entry fee. Just download a submission form at the Products section of architecturalrecord.com. Our panel will view each product category as a group, so please include an image of each submission in a slide, transparency, glossy color photo, or color printout of a digital image. If you send a CD, you must provide a labeled color printout of each image on the disk. Please make sure the digital image is a high resolution TIFF (300 DPI, at least 4 x 5 inches). If you have a labeled sample of your product (no larger than 8 x 10 inches), please include it with your submission.

Download your submission form now at the Products section at architecturalrecord.com. If you have any questions, please e-mail Rita Catinella Orrell at rita_catinella@mcgraw-hill.com. E-mailed submissions will not be accepted.
The Fulton Street Transit Center, by Grimshaw Architects is one of the case studies that will be presented at Architectural Record's 2007 Innovation Conference.

Architectural Record
2007 Innovation Conference
October 10-11, 2007–New York City

The BusinessWeek/
Architectural Record
Awards Dinner
October 10, 2007

Earn AIA CEU Credits

Register today!
Call Cristina Hoepker at 866-727-3820
Email Cristina_Hoepker@mcgraw-hill.com

Rethink. Transform. Create. Sustain

A world-wide mandate for low-energy, low-carbon-producing architecture has burst onto the scene just as advances in digital modeling tools, software-driven fabrication methods, and new materials and systems are being introduced faster than ever. Learn from highly-inventive architects, engineers, researchers, and consultants who are putting these exciting developments to work, and making delightful and sustainable buildings.
The notion that design is a simple, linear process has imploded, yielding fundamentally new view of what it means to be an architect. **Join us.**

Agenda at a glance:

Performative Architecture
Iranko Kolarevic, Haworth Chair in Environmental Design, University of Calgary, with Ali Malkawi, Director, Chan Center for Building Simulation and Energy Studies, University of Pennsylvania

Building Facades and Skins
Advanced Facade Design, Marc Simmons, and Bruce Nichol, Front Inc., William Zahner, president of A. Zahner Metals, Inc.

Transformative Structures
Chuck Hoberman, Hoberman Design

The Power of Design to Affect Transformation
Gary Van Deursen, of Van Deursen Innovation and Design

Work in place: Case Studies of Innovative and High Performance Materials and Systems

Investigating the Art and Science of Glass and Light
- James Carpenter, principal of Carpenter Design Associates, and Davidson Norris, principals of Carpenter/ Norris Consulting, Advanced Daylighting Systems
- Marilyn Andersen, PhD, Department of Architecture, at the Massachusetts Institute of Technology

Case Study: The Fulton Street Transit Center
- Andrew Whalley and Vincent Chang of Grimshaw Architects, with James Carpenter

Be the future. Be a part of Innovation 2007.

See full agenda and register: www.construction.com/events/Innovation/
<table>
<thead>
<tr>
<th>21 13</th>
<th>3M</th>
<th>3m.com/vib/structuralglazing.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 12</td>
<td>AADD</td>
<td>aaddm.com</td>
</tr>
<tr>
<td>192 74</td>
<td>Advance Lifts</td>
<td>advancecellifts.com</td>
</tr>
<tr>
<td>23 15</td>
<td>AGC Flat Glass North America</td>
<td>agcglass.com</td>
</tr>
<tr>
<td>76, 86</td>
<td>AIA</td>
<td>aia.org</td>
</tr>
<tr>
<td>196, 201</td>
<td>AIA</td>
<td>aia.org</td>
</tr>
<tr>
<td>26 17</td>
<td>ALPOLIC/Mitsubishi Chemical FP America Inc</td>
<td>alpolic-usa.com</td>
</tr>
<tr>
<td>196 80</td>
<td>American Galvanizers Association</td>
<td>galvanizet.org/galvpaint</td>
</tr>
<tr>
<td>22 14</td>
<td>American Specialties Inc</td>
<td>americanspecialties.com</td>
</tr>
<tr>
<td>195 77</td>
<td>Arakawa Hanging Systems</td>
<td>arakawagp.com</td>
</tr>
<tr>
<td>135 54</td>
<td>Architect as Developer</td>
<td>architectasdeveloper.com</td>
</tr>
<tr>
<td>178 64</td>
<td>Architectural Area Lighting</td>
<td>aalnet.com</td>
</tr>
<tr>
<td>18</td>
<td>Architectural Record</td>
<td>archrecord.construction.com</td>
</tr>
<tr>
<td>cov2-1 1</td>
<td>Armstrong</td>
<td>armstrong.com</td>
</tr>
<tr>
<td>27 18</td>
<td>B-K Lighting</td>
<td>bklighting.com</td>
</tr>
<tr>
<td>57 149</td>
<td>BEGA</td>
<td>bega-us.com</td>
</tr>
<tr>
<td>134 53</td>
<td>Beiden Brick Company, The beidenbrick.com</td>
<td></td>
</tr>
<tr>
<td>195 79</td>
<td>Bendheim</td>
<td>bendheim.com</td>
</tr>
<tr>
<td>32 23</td>
<td>Bentley Systems Inc</td>
<td>bently.com</td>
</tr>
<tr>
<td>158 57</td>
<td>Best Sign Systems Inc</td>
<td>bestsigns.com</td>
</tr>
<tr>
<td>197 81</td>
<td>Blico Company, The blico.com</td>
<td></td>
</tr>
<tr>
<td>61 38</td>
<td>Bobrick</td>
<td>bobrick.com</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>Brick Industry Association brickinfo.com</td>
</tr>
<tr>
<td>19</td>
<td>C& Group</td>
<td>c-sgroup.com/3000</td>
</tr>
<tr>
<td>195 78</td>
<td>Cascade Coil Drapery</td>
<td>cascadecoil.com</td>
</tr>
<tr>
<td>12-13 142</td>
<td>CENTRIA Architectural Systems</td>
<td>centria.com</td>
</tr>
<tr>
<td>200 84</td>
<td>Charles Loomis</td>
<td>charlesloomis.com</td>
</tr>
<tr>
<td>173 62</td>
<td>Cooper Lighting</td>
<td>cooperlighting.com</td>
</tr>
<tr>
<td>77 47</td>
<td>CR Laurence Co Inc</td>
<td>clrarence.com</td>
</tr>
<tr>
<td>192, 200 73, 86</td>
<td>Doug Mockett & Company Inc</td>
<td>moockett.com</td>
</tr>
<tr>
<td>87 51</td>
<td>E Dillon & Company edition</td>
<td>edilion.com</td>
</tr>
<tr>
<td>163 58</td>
<td>Easi-Set Industries</td>
<td>easi.set.com</td>
</tr>
<tr>
<td>54 36</td>
<td>EFICO Corporation</td>
<td>eficorpor.com</td>
</tr>
<tr>
<td>183 66</td>
<td>elliptiper</td>
<td>elliptiper.com</td>
</tr>
<tr>
<td>192 72</td>
<td>Engineered Lighting Products</td>
<td>elighting.com</td>
</tr>
<tr>
<td>189 144</td>
<td>Eventscape</td>
<td>eventscape.net</td>
</tr>
<tr>
<td>174-175 63</td>
<td>Gardco Lighting</td>
<td>gardcoglazing.com</td>
</tr>
<tr>
<td>29 20</td>
<td>Grohe</td>
<td>groheamerica.com</td>
</tr>
<tr>
<td>28 19</td>
<td>Halfen Anchoring Systems</td>
<td>halfenusa.com</td>
</tr>
<tr>
<td>31 22</td>
<td>Hanover Architectural Products</td>
<td>hanoverpavers.com</td>
</tr>
<tr>
<td>cov-4</td>
<td>91</td>
<td>Haworth</td>
</tr>
<tr>
<td>6 5</td>
<td>HDI Railing Systems</td>
<td>hdairails.com</td>
</tr>
<tr>
<td>200 87</td>
<td>Headwaters Resources</td>
<td>flyash.com</td>
</tr>
<tr>
<td>193 75</td>
<td>Horton Automatics</td>
<td>hortondoors.com</td>
</tr>
<tr>
<td>30 21</td>
<td>Indiana Limestone Company</td>
<td>indiana.mstonecompany.com</td>
</tr>
<tr>
<td>185 68</td>
<td>Insight Lighting</td>
<td>insightlighting.com</td>
</tr>
<tr>
<td>200 85</td>
<td>Invisible Structures Inc</td>
<td>invisstructures.com</td>
</tr>
<tr>
<td>46 30</td>
<td>IR - Von Duprin</td>
<td>vonduprin.ingersollrand.com</td>
</tr>
<tr>
<td>4 3</td>
<td>Jack Arnold Architect</td>
<td>jackarnold.com</td>
</tr>
<tr>
<td>41 27</td>
<td>Kawneer Company Inc</td>
<td>kawneer.com</td>
</tr>
<tr>
<td>168 61</td>
<td>Kim Lighting</td>
<td>kimlighting.com</td>
</tr>
<tr>
<td>49</td>
<td>33</td>
<td>Klas Juba Architects</td>
</tr>
<tr>
<td>80A-B</td>
<td>Kohler</td>
<td>kohler.com</td>
</tr>
<tr>
<td>180 65</td>
<td>LightingUniverse.com</td>
<td>lightinguniverse.com</td>
</tr>
<tr>
<td>24 16</td>
<td>Lutron</td>
<td>lutron.com</td>
</tr>
<tr>
<td>184 67</td>
<td>Manning Lighting</td>
<td>manninglightg.com</td>
</tr>
<tr>
<td>35 24</td>
<td>Marvin Windows & Doors</td>
<td>marvin.com</td>
</tr>
<tr>
<td>212-213</td>
<td>McGraw-Hill Construction</td>
<td>construction.com</td>
</tr>
<tr>
<td>156-157</td>
<td>McGraw-Hill Construction</td>
<td>construction.com</td>
</tr>
<tr>
<td>199, 215</td>
<td>McGraw-Hill Construction</td>
<td>construction.com</td>
</tr>
<tr>
<td>194</td>
<td>76</td>
<td>McNichols Co</td>
</tr>
<tr>
<td>191 71</td>
<td>modularArts</td>
<td>modulararts.com</td>
</tr>
<tr>
<td>88 52</td>
<td>Mortar Net</td>
<td>mortar.net</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td>National Building Museum</td>
</tr>
<tr>
<td>10-11</td>
<td>8</td>
<td>Oldcastle Glass</td>
</tr>
<tr>
<td>186 69</td>
<td>Pilkington</td>
<td>pilkington.com</td>
</tr>
<tr>
<td>16, 83 10, 49</td>
<td>PPG</td>
<td>pp.g/deascape.com</td>
</tr>
<tr>
<td>7 6</td>
<td>Pressolite</td>
<td>pressolite.com</td>
</tr>
<tr>
<td>167 60</td>
<td>Prudential Lighting</td>
<td>prulite.com</td>
</tr>
<tr>
<td>66 41</td>
<td>Quiet Solution</td>
<td>quietsolution.com</td>
</tr>
<tr>
<td>133 70</td>
<td>Rion</td>
<td>rion.com</td>
</tr>
<tr>
<td>73 44</td>
<td>Roof Products Inc</td>
<td>rpicurb.com</td>
</tr>
<tr>
<td>70 43</td>
<td>Roppe Corporation</td>
<td>roppe.com</td>
</tr>
<tr>
<td>39 26</td>
<td>SagelGlass</td>
<td>sagel-ec.com</td>
</tr>
<tr>
<td>215 89</td>
<td>Salisbury Industries</td>
<td>mailboxes.com</td>
</tr>
<tr>
<td>69 42</td>
<td>Schott Corporation</td>
<td>us.schott.com</td>
</tr>
<tr>
<td>cov-3</td>
<td>90</td>
<td>Selux</td>
</tr>
<tr>
<td>155 56</td>
<td>Simpson Strong-Tie Company</td>
<td>simpsonstrongtiew.com</td>
</tr>
<tr>
<td>190</td>
<td>Skyscraper Museum, The</td>
<td>skyscraper.org</td>
</tr>
<tr>
<td>37 25</td>
<td>Sloan Valve Company</td>
<td>sloanvalve.com</td>
</tr>
<tr>
<td>48 32</td>
<td>Smoke Guard</td>
<td>smokeguard.com</td>
</tr>
<tr>
<td>43 28</td>
<td>St. Paul Travelers</td>
<td>stpaultravelers.com</td>
</tr>
<tr>
<td>62 39</td>
<td>Steel Door Institute</td>
<td>steeldoor.org</td>
</tr>
<tr>
<td>201 88</td>
<td>Sugatsune America Inc</td>
<td>sugatsune.com</td>
</tr>
<tr>
<td>58 37</td>
<td>Sunbrella brand fabrics</td>
<td>sunbrella.com</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Technical Glass Products</td>
</tr>
<tr>
<td>75 46</td>
<td>Tindall Corp</td>
<td>tindallcorp.com</td>
</tr>
<tr>
<td>47 31</td>
<td>United States Aluminum</td>
<td>usalum.com</td>
</tr>
<tr>
<td>85 50</td>
<td>Vista Window Film</td>
<td>vista-film.com</td>
</tr>
<tr>
<td>50 34</td>
<td>Vistawall Architectural Products</td>
<td>vistawall.com</td>
</tr>
<tr>
<td>44, 45</td>
<td>29</td>
<td>VT Industries</td>
</tr>
<tr>
<td>14-15 9</td>
<td>Vulcraft, A Division of Nucor Corp</td>
<td>nucor.com</td>
</tr>
<tr>
<td>136 55</td>
<td>W&W Glass Systems Inc</td>
<td>wbglass.com</td>
</tr>
<tr>
<td>198 82</td>
<td>Wagner</td>
<td>wagnercompanies.com</td>
</tr>
<tr>
<td>165 59</td>
<td>Walker Zanger</td>
<td>walkerzanger.com</td>
</tr>
<tr>
<td>65 40</td>
<td>Walter P. Moore</td>
<td>walterpmoore.com</td>
</tr>
<tr>
<td>74 45</td>
<td>Wausau Tile</td>
<td>wausautile.com</td>
</tr>
<tr>
<td>8-9 7</td>
<td>YKAP America Inc</td>
<td>ykaap.com</td>
</tr>
</tbody>
</table>

For information from advertisers circle the corresponding number on the Reader Service Card or go to ArchitecturalRecord.com, Products Tab, Reader Service. Access PDF's of all full-page or larger ads appearing in Architectural Record each month under "Products" tab at Product Ads. Use this to e-mail ads to clients or colleagues, print out and save.
You can now access all ads appearing in *Architectural Record* online at ArchitectureRecord.com!

All print ads, full page or larger, are available in convenient PDF format by visiting ArchitecturalRecord.com. Just click the "Products" tab to access the ads.

The PDF format allows you to easily e-mail the ads to clients or colleagues. You can also print out the ads or save and file them and use as needed.

Just go to ArchitecturalRecord.com and click the "Products" tab. You'll find all ads in the "Product Ads" link at the top of the page!

connecting people_ projects_products

"We want to connect to decision makers online and drive qualified customers to our website"

Now you can

McGraw-Hill Construction's Online Marketing Solutions connect you to the leaders in the industry. With 20 specialized websites which are the most trafficked in the industry, McGraw-Hill Construction can help you maximize exposure, generate leads, increase brand awareness and boost your ROI.

Let us show you how!

Contact us today for a consultation on how we can help you start your online marketing program.

Just call us at 1-866-239-4261 or email Advertise@construction.com.
Go to www.construction.com

The industry leader in Quality Mailboxes

Contact us today for a FREE catalog!

1010 East 62nd Street • Los Angeles, CA 90001-1598 • Phone: 1 800 624 5269 • Fax: 1 800 624 5299

CIRCLE 89 ON READER SERVICE CARD OR GO TO ARCHRECORD.CONSTRUCTION.COM/PRODUCTS/
Guy Nordenson sketches to think

Guy Nordenson, a structural engineer who began his career drafting in the joint studio of R. Buckminster Fuller and Isamu Noguchi in the summer of 1976, established the New York office of Arup in 1987 and his own practice in 1997. After the World Trade Center (WTC) attacks of 9/11, he undertook structural inspections of some 400 buildings around the site and continued to provide his services with the various design deliberations that followed, including collaborating with Skidmore, Owings & Merrill on the scheme that eventually became the Freedom Tower. One of his original sketches, from 2003 (above right), now in the Museum of Modern Art’s Architecture and Design collection, shows the concept for a tower that twists around a vertical core as it rises from its rhomboid site. More recently, his office, with engineers Simpson Gumpertz & Heger, designed a system of pilasters to provide support for the exposed portion of the existing slurry wall that will become part of the WTC Memorial Museum (above left). Nordenson, who always carries his sketchbook with him, says, “Drawing is the best way to trace and nudge a fledgling idea to the point where it can be tested. The drawing is the idea, where the hand, mind, and eye come together. Computer and physical models, words, and other tools are the instruments for testing and analysis, but not in my experience the generator of strong ideas.” Jane F. Kelleeney
SELUX offers a comprehensive range of high quality light fixtures. Innovative luminaires designed to help lighting professionals and architects create exceptional interior and exterior spaces in which to live and work.

www.selux.com/usa

(800) 735-8927
See the new Compose™ furniture system — and other products and solutions — that help make workspaces great spaces.

Visit our new Washington, D.C. showroom or any of the other Haworth locations around the world.

www.haworth.com
866.833.4343