Classroom Acoustics
Enhancing the learning environment through better speech intelligibility.
classroom acoustics

On any given school day, thousands of students across the country are unable to understand 25 to 30 percent of what's said in their classroom.

The reason: excessive noise and reverberation within the classroom interferes with their ability to clearly hear their teacher.

The result: a decreased level of concentration, an increased level of stress, and an overall reduction in the level of learning.

Considering that the primary mode of teaching involves speech and listening, is it any wonder that good speech intelligibility is required in classrooms?

Acoustic environment

The quality of the acoustic environment in a classroom is vital to all students because all need to understand the teacher, but it is of particular importance to students who have hearing impairments or learning disorders; to very young students with limited vocabularies; to students for whom English is a second language; and to students with a temporary hearing loss due to illness such as a head cold.

To help remedy problems caused by inadequate acoustic design, the American National Standards Institute (ANSI) approved ANSI Standard S12.60 for Classroom Acoustics.

Titled “Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools,” the standard provides an enhanced learning environment for students and teachers alike by improving the conditions for good speech intelligibility.

ANSI Standard S12.60

ANSI Standard S12.60 addresses both the issues of reverberation time and of background noise as they affect speech intelligibility by setting maximum permissible levels on each.

Under the standard, the maximum acceptable reverberation time in unoccupied but furnished classrooms with volumes up to 10,000 cubic feet is 0.6 seconds, and 0.7 seconds for classrooms between 10,000 and 20,000 cubic feet. Reverberation time is the time required for sound reflections within a room, such as from a loud hand clap, to become inaudible.

The maximum acceptable background noise allowed in these classrooms is 35 decibels (dBA). By comparison, the loudness of a normal face-to-face conversation is about 60 dBA.

These acoustical performance requirements apply to the design and construction of new classrooms of small-to-moderate size, and, as far as is practical, to the renovation of existing classrooms.

At the present time, the ANSI standard is voluntary unless referenced by a code, ordinance or regulation. Individual school districts, for example, may require compliance with the standard as part of their construction documents for new schools.

New classrooms

ANSI Standard S12.60 is a performance specification in that it states desired results but not how to attain them. However, it does include a number of appendices that are prescriptive in nature, with specific design suggestions, including choice of materials.

Designing a classroom to meet the acoustical requirements of the standard is neither difficult nor costly. The key is to include acoustic concerns early in the planning and design stages. With this in mind, general guidelines are described below.

Reverberation time. For any given room, reverberation time decreases as additional sound absorptive materials are added in the space. Both the amount of sound absorptive materials and its location in the space are important considerations that affect the quality of sound within the room.

- For classrooms with ceiling heights of approximately 10 feet, place most, if not all, of the sound-absorbing material on the ceiling. This is usually the easiest and lowest cost solution. For best results, choose an acoustical ceiling panel that has a Noise Reduction Coefficient (NRC) rating of at least 0.70.
- For rooms with ceilings between 12 and 15 feet high, it may be advantageous to place some of the absorptive material on the walls as well as on the ceiling.
- For ceiling heights over 15 feet, it is usually necessary to utilize wall absorption. Acoustical wall treatments usually consist of 3/4” to 1” thick mineral fiber or fiberglass backer board with a vinyl or fabric covering.

If there is no possibility of acoustical wall treatment, try to ensure that three-dimensional furnishings such as bookshelves are distributed around the room to diffuse sound reflections, thereby reducing the possibility of echoes.

Carpeting may also help reduce reverberation, but not as much as a good acoustical ceiling because most commercial carpeting is generally a poor absorber (NRC of 0.25 or lower). However, carpeting can help reduce background noise caused by the sound of people walking, and desk and chair shuffling.

Figures #1 and #2 show the difference in sound paths in a classroom that is not acoustically treated compared to one that is.

Background Noise. There are many sources of background noise that may intrude into a room. How these are handled depends of the path the noise takes in entering the room. The primary contributors to background noise are described below.

Noise Traveling Through the Plenum. Some rooms are constructed with walls that are only as high as the suspended ceiling, rather than extending all the way up to the roof or floor deck above. As a result, noise from an adjacent room can
penetrate the ceiling plane and move unimpeded throughout the ceiling plenum. Some portion of this plenum noise will pass back down through the ceiling into adjoining rooms, thereby adding to the background noise in each room. To help reduce plenum noise intrusion:

I Choose an acoustical ceiling panel that has a Ceiling Attenuation Class (CAC) rating of 35 or higher.

I Backload the suspended ceiling with R-11 fiberglass building insulation batts.

I Install a gypsum board plenum barrier between adjacent rooms, being sure to seal all penetrations such as pipes, ducts, cable runs, etc.

Noise Traveling Through the Walls. Years ago, interior school walls were built of brick or concrete block, so intrusion of sound through a partition wall was not much of a problem. Today, noise intrusion must be addressed because most walls are constructed using metal studs with a layer of gypsum wallboard on each side.

According to the ANSI standard, the minimum Sound Transmission Class (STC) rating of a wall separating two adjacent classrooms is 50. To achieve this rating and reduce noise transmission between rooms:

I Add R-11 fiberglass insulation in the cavity between the gypsum board layers.

I Add a second layer of gypsum board to each side.

I Seal all gaps between the walls and the floor and ceiling.

I Seal any openings in the wall such as piping, electrical outlets, and HVAC registers.

HVAC Noise. The main source of background noise in classrooms is usually the heating, ventilation and cooling (HVAC) system. A centralized system is usually much quieter than window or room units since these units usually contain high velocity fans that are very loud and difficult to treat with sound absorbing materials in the room. To help reduce HVAC noise:

I Locate air handlers and rooftop mechanical equipment away from critical listening spaces such as classrooms.

I Locate the equipment over spaces that are inherently noisy, such as corridors, cafeterias and gymnasiums.

I Position units over hallways and then run ducts to nearby classrooms.

Existing classrooms

A classroom designed without regard to good acoustics will often include a high ceiling of plaster or gypsum board; masonry or gypsum board walls, and a hardwood or tile floor.

Unfortunately, numerous classrooms fitting this description were built in the days before sensitivity to acoustical needs. In such a classroom, long reverberation times tend to destroy speech intelligibility, especially for younger children.

Acoustical problems in existing classrooms can be solved, but the options are often limited. This is because little can be done to change the architectural infrastructure or HVAC system without great expense. Consequently, the most common and affordable solution is to control reverberation through the addition of sound absorptive materials. To improve the acoustical environment of an existing classroom:

I Install a suspended acoustical ceiling in a classroom that does not have one.

I If an acoustical ceiling is already in the room, replace panels that have a low NRC (0.50 or lower) with panels that have a higher NRC (0.70 or higher).

I Add acoustical wall treatments and “space absorbers” (baffles).

I Add carpeting.

I Seal as many openings in the common walls as possible.

I Add a second pane of glass with an air gap to the windows, if possible, to help block exterior noise.

I Install vibration isolators under HVAC equipment, and silencers in the ductwork.

Solutions such as these do not add significantly to the construction cost of a new building. It is when they are included as part of a retrofit that additive costs usually apply.

Quiet classrooms

The need for good classroom acoustics and the methods for attaining them have been known for decades. However, in the absence of a standard, far too many schools have been built with little or no concern for good hearing.

The establishment of ANSI S12.60 fills that void by providing clear design goals for both school planners and administrators. It also raises awareness of the learning problems associated with poor acoustics and, hopefully, eventually eliminates design problems from being repeated as new schools are built.
Case Study

An evaluation conducted by Dr. Kenneth Roy, senior principal research scientist for Armstrong Building Products, demonstrates the difference a high performance acoustical ceiling can make in a classroom renovation.

The acoustic test took place in a sixth grade classroom at the Robert E. Lamberton Public School in Philadelphia, PA. Built in 1949, the 24’x44’x11’ classroom had a spray-applied 1/2” fiber-on-plaster ceiling, concrete block walls, and a vinyl tile floor. The NRC of the existing ceiling was estimated to be approximately 0.25.

The reverberation time in the existing room was 1.1 seconds averaged over the frequency range specified by ANSI S12.60, far exceeding the maximum acceptable reverberation time of 0.6 seconds.

An Armstrong School Zone™ Fine Fissured suspended ceiling with an NRC of 0.70 was then installed. This ceiling is designed specifically for educational facilities and features more uniform sound absorption than most conventional ceiling panels commonly used in these applications. Following the change in ceilings, measurements were re-taken and the average reverberation time was now 0.56 seconds, within the acceptable limit.

Reverberation Calculator

To help demonstrate the beneficial effect of acoustical treatment in a classroom, Armstrong Ceilings has developed a web-based, interactive Reverberation Calculator that allows users to hear the difference in sound quality both before and after treatment. It will even provide recommendations for a new space or an upgrade to an existing space.

To access the calculator, simply log on to armstrong.com/schools and follow the prompts regarding a description of the space and its surface materials. The program will first calculate the current reverberation time and allow users to hear the quality of the sound. Following selection of acoustical treatment options, the program will then allow users to hear the difference in sound quality with lowered reverberation time.

Resources

The information on classroom acoustics and ANSI Standard S12.60 has been provided by Armstrong Ceiling Systems. There are additional resources available to you to meet your needs. They include:

- Classroom Acoustics CEU course at armstrong.com/ceu
- Reverberation Calculations through TechLine™ at 1-877-ARMSTRONG
- Reverberation Calculation Form at armstrong.com/schools
- “Classroom Acoustics, a resource for creating learning environments with desirable listening conditions,” Acoustical Society of America, asa@aip.org
- Your Armstrong Ceiling Systems representative at 1-877-ARMSTRONG